Supplementary Material for: “Recent Geodetic Unrest at Santorini Caldera, Greece”

Andrew V. Newman¹, Stathis Stiros², Lujia Feng¹,³, Panos Psimoulis²,⁴, Fanis Moschas², Yan Jiang⁵, Costas Papazachos⁶, Dimitris Panagiotopoulos⁶, Eleni Karagianni⁶, Domenikos Vamvakaris⁶

¹. School of Earth and Atmospheric Sciences, Georgia institute of Technology, 311 Ferst Drive, Atlanta, GA, USA. anewman@gatech.edu
². Department of Civil Engineering, University of Patras, Greece.
³. now at: Nanyang Technological University, Earth Observatory of Singapore, 50 Nanyang Avenue, Block N2-01a-15, 639798, Singapore, lfeng@ntu.edu.sg
⁴. now at: Institute of Geodesy and Photogrammetry HPV F 51 Schafmattstrasse, 34 8093 Zurich, panagiotis.psimoulis@geod.bau.ethz.ch
⁵. University of Miami, Rosenstiel School of Marine and Atmospheric Sciences, Miami, FL 33149, USA
⁶. Geophysical Laboratory, Aristotle University of Thessaloniki, Greece.

Survey GPS data collection and Processing:
All campaign GPS measurements are performed using 0.5 m fixed-height spike-mounts, and are leveled using precision machinist levels, in order to that minimize user-error in both vertical and horizontal measurements. During surveys, sites were occupied for 3-day periods, with the exception of the 2011-I survey in which sites were occupied for 2-day periods due to timing constraints.

For all GPS data precise point positions are determined at the University of Miami Geodesy Lab using version 6.1 of the OASIS-GIPSY software using Blewitt’s (2008) Ambizap algorithm to resolve ambiguities, an using NASA- Jet Propulsion Laboratory precision satellite orbits. All solutions are determined in ITRF2008. Such data reduction methods represent the state-of-the-art in precision GPS processing, and require on average a 2-week latency before solutions can be resolved. More rapid, but noisier solutions are also determined using rapid orbit products from JPL. These orbits have about a factor of 2 increase in their rms positions, but are available within 2 days, and are hence more valuable for warning.

Additional References:
Figure S1: [left] Horizontal and [right] vertical GPS velocity field for Santorini using campaign GPS in 2006, 2008 and 2010, and 3 continuous GPS operating through this time. For all illustrations the mean island velocity (East, North = 7.06, -15.78 mm/yr) as determined by these 22 stations is removed. Velocities are scaled to be comparable to other figures in this study.
Figure S2: [a] Horizontal and [b] vertical GPS velocity vectors (black arrows) along with model predictions (red arrows) for the best fit spherical source solution (red cross) for the period between the last campaign or continuous GPS data in 2010, and June 2011. [c] Also shown is the depth versus volume trade-off.
Figure S3: [a] Horizontal and [b] vertical GPS velocity vectors (black arrows) along with model predictions (red arrows) for the best fit spherical source solution (red cross) for the period between September 1, 2011 and January 21, 2012. [c] Also shown is the depth versus volume trade-off.
Inflation [cm]

Distributed Sill Source (z=4km)

Figure S4: Best fit solution for a distributed sill model for Santorini. This model is fixed at 4 km depth, uses 144 - 0.01°x0.01° patches to describe opening-mode dislocations following Okada [1985]. The solution is smoothed using Laplacian constraint to minimize the reduction in fit quality with model roughness. The model finds a maximum inflation of up to 80 cm in the central caldera, and a volumetric growth of 9.2 million m³. While the sill model has about 2x worse misfit (rms = 1.5 cm) than the best spherical source models, the data is useful because it illuminates the potential lateral contribution of inflation.
Animation S1: Three-dimensional animation of the static displacement field between the 2010 and September 2011 surveys, corresponding to data shown in Figure 1. Vector magnitudes scale between 1.9 and 7.7 cm, and all radiate from a point in the northern section of the caldera.