Energetic rupture, coseismic and post-seismic response of the 2008 M_W 6.4 Achaia-Elia Earthquake in northwestern Peloponnese, Greece: an indicator of an immature transform fault zone

Lujia Feng, Andrew V. Newman, Grant T. Farmer, Panos Psimoulis and Stathis C. Stiros

1School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA 30332, USA. E-mail: anewman@gatech.edu
2Department of Civil Engineering, University of Patras, Patras 26500, Greece

Accepted 2010 July 19. Received 2010 July 19; in original form 2009 December 9

SUMMARY
The 2008 June 8, moment magnitude M_W 6.4 crustal earthquake in northwestern Peloponnese, Greece, was a strong-shaking dextral strike-slip event with teleseismic broad-band and high-frequency energy magnitudes M_e of 6.8 and 7.2, respectively. A high stress drop 5–10 times the global average is associated with excessive high-frequency energy. The NE–SW trending fault plane shown by the aftershock distribution and focal mechanism is not associated with previously mapped faults, and no obvious coseismic surface rupture was discovered. Contrasting the enhanced rupture energy, the event created no substantial coseismic or post-seismic surface deformation, likely due to a fault buried below a detached thick and compositionally weak flysch layer. Comparative spatial analysis including over 30 regional strike-slip events between 1965 and 2009 reveals a NE–SW striking diffuse transform fault zone subparallel to the Cephalonia Transform Fault. The dextral sense of motion along the transform zone is consistent with the ongoing Global Positioning System (GPS)-derived deformation along the West Hellenic Arc and the motion on the Cephalonia Transform Fault. Characterizing this system is important to constraining the seismic hazard near Patras, a major port city immediately NE of the 2008 event.

Key words: Satellite geodesy; Radar interferometry; Seismicity and tectonics; Transform faults; Dynamics and mechanics of faulting; Europe.

INTRODUCTION
On 2008 June 8, a strong rupturing crustal earthquake struck NW Peloponnese, Greece (Fig. 1b). The event is reported as a moment magnitude $M_W = 6.4$ strike-slip earthquake by the global centroid moment tensor (gCMT) catalogue (Eskrøm et al. 2005), making it the largest such event instrumentally recorded in this area. The enhanced shaking of this earthquake was felt throughout mainland Greece. It triggered a number of landslides and rockfalls, toppled old buildings and un-/poorly reinforced houses and cracked reinforced concrete building in nearby communities. Secondary ground fissures were observed on the pavement of roads and bridges; however, neither positive evidence of surface rupture nor significant surface deformation was observed (Briole et al. 2008; Ganas et al. 2009; Margaris et al. 2010; this study).

The Peloponnese is part of the Aegean microplate, which is fast moving to the SW away from Eurasia at ~ 30 mm yr$^{-1}$ (McClusky et al. 2000; Reilinger et al. 2006), overriding the African Plate along the Hellenic subduction zone to the south at ~ 5 m myr$^{-1}$ (McClusky et al. 2000; Fernandes et al. 2003) and sliding past the Apulian platform along the dextral strike-slip Cephalonia Transform Fault (CTF) to the west (e.g. van Hinsbergen et al. 2006, Fig. 1a). Global Positioning System (GPS) sites east of the CTF show increased relative motion southward from ~ 10 mm yr$^{-1}$ to ~ 30 mm yr$^{-1}$ (Hollenstein et al. 2006, 2008). Aegean–Eurasian motion is partially localized on WNW–ESE trending normal faults within the fast-spreading young rift forming the Gulf of Corinth (GC, Fig. 1a). N–S extension within the rift increases from 11 mm yr$^{-1}$ in the central zone to 16 mm yr$^{-1}$ in the west (Avallone et al. 2004). To first order, the Peloponnese is considered to move along with the Aegean Plate with little internal deformation (<2 mm yr$^{-1}$; McClusky et al. 2000); however, motion in the NW Peloponnese is modestly reduced and perturbed toward the south (Hollenstein et al. 2008 and fig. 6 therein). Le Pichon et al. (1995) proposed that the NW Peloponnese belongs to the central Ionian Islands block rather than the Peloponnese system. Due to lack
of sufficient modern geodetic observations and low-rate seismicity, the extent and accommodation of strain across the region remained unclear before the 2008 Achaia-Elia Earthquake.

The 2008 Achaia-Elia Earthquake exhibits an approximately 25 km long NE–SW trending aftershock distribution that, together with fault plane solutions (compiled in Ganas et al. 2009), clearly indicates right-lateral strike-slip on a near-vertically dipping fault that is unassociated with existing mapped faults (Fig. 1b). The earliest identified fault system in the NW Peloponnese is the N–S to NNW–SSE striking thrusts with secondary sinistral WNW–ESE and dextral WSW–ENE strike-slip faults (Kamberis et al. 2000) active from the late Eocene to the Oligocene (Sotiropoulos et al. 2003; van Hinsbergen et al. 2005) as a part of the west-verging External Hellenide orogenic belt. The active thrust front has moved westwards to the West Hellenic Arc as shown by the destructive surface wave magnitude $M_s = 7.2$ Cephalonia earthquake in 1953 (Stiros et al. 1994). After the collisional episode, two independent and locally interacting sets of WNW–ESE and NE–SW trending normal faults related to the latest extensional stage dominated the area since the late Pliocene (Doutsos & Kokkalas 2001). The 2008 earthquake does not correspond to, but instead crosscuts the pre-existing thrusts and normal faults. We show the NE–SW trending strike-slip faulting of the 2008 June 8, earthquake is likely part of an early stage of a diffuse transform regime, accommodating dextral motion between the Apulian and Aegean plates along with the CTF (Fig. 1a). Because Patras, the third largest city in Greece, is located only ~35 km from the epicentre and is in the approximate striking plane of the 2008 earthquake, the continued activity along this transform system poses a previously poorly understood seismic hazard.

STRONG RUPTURE

Using the methodology and algorithms of Newman & Okal (1998) and Newman & Convers (2010), we evaluate the radiated seismic energy from teleseismically distributed (between 25° and 80° from the event) broad-band vertical waveforms. Averaging the seismic energy as determined from 53 stations after correcting for distance, attenuation, focal mechanism and depth, we find that the 2008 Achaia-Elia Earthquake had excessive rupture energy that may have contributed to the enhanced shaking that caused regional damage. We obtain broad-band (period 0.5 s to 70 s) energy $E_{bb} = 4 \times 10^{14}$ J and high-frequency (period 0.5 s to 2 s) energy $E_{hf} = 2.7 \times 10^{14}$ J that correspond to broad-band and high-frequency energy magnitudes $M_{e,bb} = 6.8$ and $M_{e,hf} = 7.2$, respectively, using the conversion from Choy & Boatwright (1995):

$$M_{e,bb} = 2/3 \log_{10}(E_{bb}) - 2.9,$$

(1)

after making a standard conversion from E_{hf} to E_{bb} using the relationship $E_{bb} = 5E_{hf}$ from Newman & Convers (2010). Our determinations are similar to the reported energy magnitude $M_s = 7.0$ from the US Geological Survey Preliminary Determinations of Epicentres (catalogue described in Dewey et al. 2007). The 0.4 and 0.8 unit magnitude discrepancies between the energy and moment magnitudes highlight the disproportional increase in high-frequency shaking of the event, which may be the result of relatively high stress drop $\Delta \sigma$.

Such a determination can be made by the direct comparison between energy E_{bb} and moment release M_0 of an event, where

$$\Delta \sigma = 2GE_{bb}/M_0,$$

(2)
Immature rupture of the 2008 Achaia earthquake

Figure 2. Distribution of radiated broad-band seismic energy to moment showing the relationship for most earthquakes (open circles) is near $E_{bb}/M_0 = 10^{-4.8}$ (figure after Newman & Convers 2010). The Patras event (filled diamond) is anomalously high in energy, with $E_{bb}/M_0 = 10^{-4.1}$, which can be explained by excessive $\Delta \sigma$, while a smaller $M_W 5.5$ event (090216) approximately 50 km away maintains an energy ratio similar to the global average.

allowing few assumptions about the extent of coseismic and final stress along the rupture and regional crustal rigidity G (e.g. Stein & Wysession 2003). The energy to moment ratios E_{bb}/M_0 for large global events range between $10^{-4.8}$ and $10^{-5.0}$ (Choy & Boatwright 1995; Newman & Okal 1998; Weinstein & Okal 2005), which yields $\Delta \sigma$ estimates between 0.6 and 1 MPa assuming $G = 30$ GPa. Using the same conversion for the 2008 Achaia-Elia Earthquake, where $E_{bb}/M_0 = 10^{-4.1}$ (Fig. 2), we find $\Delta \sigma = 5$ MPa, a value that is between 5 and 10 times the global average. A nearby event (090 216 in Fig. 2) has $\Delta \sigma = 0.6$ MPa, comparable to the global average, suggesting that the large stress-drop associate with the Achaia-Elia Earthquake is not due to regional changes in rigidity. (Herein, event identifiers represent the date of the event: YYMMDD). Explanations of such a high $\Delta \sigma$ include a relatively large or fast coseismic slip, which may be due to rupture of an immature fault containing little, if any, fault gouge (Marone 1998).

It should be noted that the observed stress drop for this event is not significantly larger (less than a factor of 2) than the independently determined global average $\Delta \sigma = 3$ MPa from another global study that estimated results using precision determination of corner frequencies (Allmann & Shearer 2009). Though a direct comparison of average stress drops between this study and those of Allmann & Shearer (2009) cannot be made because of differences in methods, their findings of near an order of magnitude variance and a factor of two or more increase in $\Delta \sigma$ of strike-slip events is intriguing.

InSAR COSEISMIC ANALYSIS

To explore the possible spatial extent of coseismic surface displacement, we utilized repeat passes of C-band ENVISAT (European Space Agency satellite) Synthetic Aperture Radar (SAR) phase data encompassing the coseismic period to construct Interferometric SAR (InSAR) images using ROI_PAC software (Rosen et al. 2004). Since the satellite’s right-looking ascending (northward) path is advantageous for detecting NE–SW motion, ascending scenes on 2007 December 16 and 2008 July 13 (Fig. 4a) are expected to be optimal, however, are largely decorrelated in the zone of interest. A second descending orbit pair was also examined with comparable areas of decorrelation. Unfortunately, in either image, little substantive information about the coseismic displacement could be obtained. However, regions near the projected fault plane maintain modest coherence in the ascending image, yet little interference consistent with coseismic activity is identifiable, implying buried and perhaps detached slip in the subsurface.

GPS POST-SEISMIC ANALYSIS

To record possible post-seismic surface deformation, a local network of nine continuous GPS sites was rapidly deployed between 24 and 72 hr of the initial rupture, and maintained for approximately six weeks (Fig. 3a). The sites including one base station at the University of Patras, and eight stations near the early aftershock
Figure 3. (a) Location of the temporary network of nine continuous GPS sites (red diamonds). Thick solid line striking N30°E defined by the southern end [21.490°, 37.925°] and the northern end [21.633°, 38.120°] represents the approximately 25-km long projected fault trace estimated from main shock and 1 d of aftershocks (yellow circles; AUTH catalogue). (b) JPL-GIPSY daily solutions for post-seismic period. (c) GAMIT-Track solutions for the first 3 d of recording. Data are 5-min averaged 15-s kinematic solutions relative to site UP AT. Neither daily (b) nor rapid kinematic solutions (c) show discernible post-seismic displacement across the network.

locations. Sites were installed either on rooftops of visibly undamaged 1–2 story homes, or on exposed bedrock in open fields. Six weeks of daily point-position solutions were determined using JPL-GIPSY (Zumberge et al. 1997). For the initial 3 d, 15-s kinematic solutions relative to site UP AT were determined using the Track software included with GAMIT/GLOBK (Herring et al. 2008). Even though numerous M_L 2–4 aftershocks continued in this region (Ganas et al. 2009), no discernible early post-seismic deformation was identified across the network using either daily solutions or rapid kinematic solutions (Figs 3b and c). Some shifts are observed in the kinematic solutions; however, they are mostly short-lived (less than 1 d), not correlated across stations and are likely not tectonic in origin.

DISCUSSION

The lack of coseismic surface rupture and significant surface deformation may be attributed to the increased depth of the 2008 Achaia-Elia Earthquake. The initial focal depth estimates varied significantly from 5 to 38 km (table 2 in Ganas et al. 2009); however, the hypocentre depth was subsequently relocated with results between 18 and 22 km (Gallović et al. 2009; Ganas et al. 2009; Konstantinou et al. 2009). Since very few relocated aftershocks were below 25 km (Ganas et al. 2009; Konstantinou et al. 2009), 25 km is probably the lower limit of the base of the seismogenic zone.

To test whether the increased depth can explain the coseismic surface deformation deficit, we develop a series of uniform-slip vertically dipping dextral fault models with different burial depths using the Okada (1992) dislocation model. We fix seismic moment M₀ = 4.6 × 10¹⁸ Nm (determined by gCMT), fault length l = 25 km as identified by early aftershocks (see fault surface trace in Fig. 3a), fault bottom at h = 25 km depth and average crustal rigidity G = 3 × 10¹⁰ Pa. We then determine the average slip \(\bar{D} \) required for an event occurring below a burial depth h, by

\[
\bar{D} = \frac{M_0}{G(h - b)},
\]

where \(h - b \) represents the fault width \(w \). The horizontal surface displacements along the line bisecting and normal to the fault trace for each model are calculated and plotted in the burial depth and fault normal distance space (solid curves in Fig. 4c). Though a trade-off between \(b \) and \(\bar{D} \) is necessary to maintain constant M₀, deeper burial requires lesser surface deformation. The horizontal surface deformation normally bisecting a fault ranges from almost 5 cm at 2 km burial to a little more than 1 cm at 10 km burial depth. Considering the fault length and allowing a generous bottom depth (25 km), a burial depth to 10 km is unlikely as it would create an unnecessarily large \(l:w \) aspect ratio. Alternatively, a more
Flysch is characterized by rhythmic alternations of sandstone and pelitic layers of varying rock strength (Marinos & Hoek 2001); however, it is typically weak and compliant with $G \leq 5$ GPa (estimated from Marinos & Hoek 2001), much lower than carbonates, or granitic crust $\sim 20–30$ GPa (e.g. Carmichael 1982). To understand whether the reduced rigidity alone can explain the lack of coseismic surface deformation, we employ an elastic model that has a 3-km thick surface layer with reduced rigidity ($G = 5$ GPa representing the flysch layer) over a stronger half-space ($G = 30$ GPa representing carbonates, or typical granitic crust) using Fortran programs EDGRN/EDCMP (Wang et al. 2003). Compared with homogeneous elastic models having the same fault parameters, the two-layer models allow for increased coseismic surface deformation (dashed curves in Fig. 4c). Thus, we conclude a detachment between the seismogenic crust and the flysch layer would best explain the lack of significant observed surface deformation.

With lower overall stress, the compliant flysch may allow for an essentially decoupled cap and hence lateral coseismic slip in the carbonates will not necessarily propagate through the flysch layer. A clear correlation between the strength of the geological formations and the existence of surface rupture was observed for the 1980 $M_s 6.9$ Irpinia normal earthquake in southern Apennines, Italy, where the surface faulting cut through carbonate platform rocks and was absent in the presence of thick flysch (Lyon-Caen et al. 1988; Bernard & Zollo 1989). Similarly, the detached surface layer may prohibit propagation of coseismic deformation to the surface as well. Strain in the flysch might be released independently by interseismic ductile deformation similar to that proposed by Fialko et al. (2005) for 2004 $M_w 6.5$ Bam earthquake in Iran, or fail in subsequent, smaller earthquakes.

Not only did the 2008 Achaia-Elia Earthquake have little discernable coseismic deformation, it had no perceptible early post-seismic surface deformation from our GPS analyses. The most likely and potentially substantial candidate for fault-related deformation in the months that follow the main shock is afterslip–aseismic slip down dip extent of the fault within a homogeneous elastic earth cannot explain the observed small surface deformation. Therefore, we argue that the compositionally weak, ~ 3 km thick flysch layer acts as a near-surface decoupling agent that isolates subsurface deformation from the surface.

Flysch is a sequence of syn-orogenic deep-marine terrigenous-clastic deposits (van Hinsbergen et al. 2005). The flysch deposits in NW Peloponnese were accumulated on top of the pre-orogenic Triassic to Eocene carbonates in the Gavrovo-Tripolitza and Ionian foreland basins mainly in the Oligocene during the overthrusting course of the Pindos and Gavrovo-Tripolitza nappes onto the Ionian zone caused by the collision-subduction between the Apulian and Eurasian plates (Kamberis et al. 2000; Sotiropoulos et al. 2003; 2005; van Hinsbergen et al. 2005). The average thickness of the flysch deposits is estimated to be approximately 3000 m from seismic and borehole measurements (Kamberis et al. 2005). A portion of the Gavrovo-Tripolitza flysch is exposed in the middle part of the 2008 Achaia-Elia Earthquake region; while most of the flysch is covered by variously thick Pliocene-Quaternary sediments in the extensional basins rather than exposed at surface (Fig. 1b).

Flysch is characterized by a transform fault buried at 5 km depth (Figs 4b and c). The burial depth and downdip extent of the fault within a homogeneous elastic earth cannot explain the observed small surface deformation. Therefore, we argue that a detachment between the seismogenic crust and the flysch layer would best explain the lack of significant observed surface deformation.

With lower overall stress, the compliant flysch may allow for an essentially decoupled cap and hence lateral coseismic slip in the carbonates will not necessarily propagate through the flysch layer. A clear correlation between the strength of the geological formations and the existence of surface rupture was observed for the 1980 $M_s 6.9$ Irpinia normal earthquake in southern Apennines, Italy, where the surface faulting cut through carbonate platform rocks and was absent in the presence of thick flysch (Lyon-Caen et al. 1988; Bernard & Zollo 1989). Similarly, the detached surface layer may prohibit propagation of coseismic deformation to the surface as well. Strain in the flysch might be released independently by interseismic ductile deformation similar to that proposed by Fialko et al. (2005) for 2004 $M_w 6.5$ Bam earthquake in Iran, or fail in subsequent, smaller earthquakes.

Not only did the 2008 Achaia-Elia Earthquake have little discernable coseismic deformation, it had no perceptible early post-seismic surface deformation from our GPS analyses. The most likely and potentially substantial candidate for fault-related deformation in the months that follow the main shock is afterslip–aseismic slip
driven by a stress perturbation that builds as coseismic rupture is arrested within the upper 4–5 km velocity-strengthening region (Marone et al. 1991). Afterslip is observed to exist in regions of coseismic slip deficit and is at times comparable or larger in magnitude than coseismic slip for mature transform faults, which may have thick unconsolidated gouge zones at shallow depths, or faults overlain by poorly consolidated sediments (Marone et al. 1991; Marone 1998). The causal relation between unconsolidated fault gouge and afterslip suggests the 2008 Achaia-Elia Earthquake probably ruptured an immature fault without significant fault gouge that could favour afterslip. Instead, we suggest that the event had near complete coseismic slip along the seismogenically favourable fault at depth, but was unable to transmit significant stress to the potentially detached overriding flysch layer, making it unlikely to sustain any afterslip.

The 2008 Achaia-Elia Earthquake is the largest, but not the first strike-slip event in NW Peloponnese in recent history. Over 30 additional dominantly strike-slip crustal earthquakes with $M > 4$ have been identified between 1965 and 2009 in NW Peloponnese and surrounding regions from published reports and earthquake catalogues (compiled in Ganas et al. 2009, Fig. 5). A diffuse series of NE–SW trending dextral transform faults subparallel to the southern branch of CTF can be interpreted according to the distribution and focal mechanisms of these earthquakes. The major transform fault on which the 2008 Achaia-Elia Earthquake occurred extends at least 40-km long crossing NW Peloponnese and might connect with the

Figure 5. $M > 4$ strike-slip focal mechanisms in NW Peloponnese and surrounding regions. The seismic activity identifies a diffuse NE–SW trending transform fault zone in the crust (dark grey arrows and thick dash lines). Most fault planes are solutions combined from gCMT 1976–2009 and European-Mediterranean Regional CMT (RCMT) 1997–2009 (http://www.bo.ingv.it/RCMT). Higher quality solution is used if the same event exists in both; gCMT solution is used if the quality flags are the same. Benetatos et al. (2004) (for events 650 405, 850 907, 870 610, 890 820 and 930 714), Kiratzi et al. (2008) (for event 751 231) and Hatzfeld et al. (1990) (for event 860 624) are used as supplementary for missing events or events with low solution quality. Thrust earthquakes $M \geq 5.5$ in gCMT catalogue are also plotted for reference. Event locations (beach-balls) and 10-day aftershocks (circles) differentiated by colours are taken from Papanastassiou et al. (2001) for earthquakes in 1950–2000 and from the National Observatory of Athens catalogue (http://www.gein.noa.gr) after 2000. Faults are compiled from Ferentinos et al. (1985), Louvari et al. (1999), Flotte et al. (2005), Lagios et al. (2007), Kiratzi et al. (2008) and Bell et al. (2008). Red arrows show the horizontal velocities of GPS sites along the West Hellenic Arc during 1995–2001 relative to Eurasia (Hollenstein et al. 2006). GC, Gulf of Corinth; GP, Gulf of Patras; ZAK, Zakynthos Island; CTF, Cephalonia Transform Fault; RPF, Rion-Patras Fault; EF, Evinos Fault; LT, Lake Trichonis.
recently active Rion-Patras fault described by Flotté et al. (2005) to the north (Fig. 5). To the south, its extension likely continues further south for another 40 km into the Ionian Sea (Fig. 5). The dextral sense of motion on the major transform fault is widely accepted, however identification of fault and auxiliary planes was not clear for some events including 881016 (Kyllini) and 021202 (Vathromoloi) earthquakes in the Zakynthos Channel and 930926 (Pyrgos) earthquake. The NE–SW trending 10-day aftershocks and the NE–SW differential shear motion shown by the continuous GPS sites along the West Hellenic Arc (Hollenstein et al. 2006, Fig. 5) suggest a dextral mechanism for each of the recorded events. The small, but widely spread, transform zone in the Zakynthos Channel is most likely restricted by a number of thrust events to the south and a possible more-rigid block to the north, as evidenced by low-seismicity rates (e.g. Hatzfeld et al. 1990). A similar wide spread transform zone is also observed in the Ionian Sea. The connection of the Ionian transform zone with the Pyrgos (930926) transform fault is not currently evident with the possibilities that either continuity between them or discontinuity by another small more-rigid block may exist. The 751231 earthquake near Lake Trichonis is likely a dextral slip event related to the Evnos fault just south of it. The newly recognized dextral shear zone had increasing activity over the past 30 yr and is potentially beginning to accommodate dextral shear between the Apulian and Aegean plates, similarly to the CTF.

Outside of some limited historical evidence of damaging events near Patras approximately 200 yr ago (Simopoulos 1985; Stiros 1995; Ambraseys & Jackson 1997), little is known about the earthquake potential and seismic hazard in the region. Hence, identification of the diffuse dextral shear zone that includes the 2008 event helps illuminate the internal deformation of the area. It is now evident that Patras, centrally located between this shear zone and the rapidly extending GC, has significant seismic hazard. Because the rates of deformation and historic activity are poorly constrained, more effort is necessary to evaluate the long-term recurrence and near-term potential of a moderate to large transform earthquakes near Patras.

CONCLUSIONS
We identified the 2008 June 8, \(M_{W} 6.4 \) Achaia-Elia Earthquake to have a highly energetic rupture with teleseismic \(M_{b} \) between 6.8 and 7.2. Such large energy release is highly suggestive of a near order-of-magnitude increase in stress-drop over the global average. Field investigation of GPS and analyses of InSAR images identify a small dextral slip deficit, but does not associate high-energy initial fault slip from the surface. The 2008 June 8, earthquake together with numerous smaller strike-slip events reveals an immature NE–SW trending dextral transform fault zone, which likely accommodates distributed shear between the central Ionian islands and NW Peloponnese.

ACKNOWLEDGMENTS
We thank T. H. Dixon and F. Amelung for thoughtful discussion and for use of the University of Miami’s Geodesy lab for GPS data processing and SAR scene acquisition. F. Moschas and S. Lycourghiotis were invaluable during the field campaign. Images were created using GMT (Wessel & Smith 1991). The School of Earth and Atmospheric Sciences and the Georgia Tech Research Foundation supported this study. Some results are based on data and equipment provided by UNAVCO with support from NSF and NASA EAR-0735156.

REFERENCES

