EAS 8803 - Obs. Seismology
Lec#12: Waveform Stacking

* Dr. Zhigang Peng, Spring 2013
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» Data management and basic data processing

tools

» Systematic and random errors
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This Time

* Waveform stacking
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Stacking

* Random errors
+ Stacking examples
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Introduction to Stacking

» Seismology use seismic data to estimate
quantities related to the Earth structure and
seismic source.

* Ideally these estimates are both accurate
and precise.

— Accuracy measures the deviation of the
estimate from its true value.

— Precision measures the repeatability of
individual estimates.

Chap. 6.5 of the Stein book
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Accuracy vs. Precision

* Accuracy depends on systematic errors that
bias groups of estimates.

* Precision depends on random errors that
affect individual estimates.

» Estimates can be precise but inaccurate, or
accurate but imprecise.

 Can you think of any example in seismology?

©

Hi§h accuracy, but low precision High precision, but low accuracy
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Example

* An estimate of an earthquake’s location depends on the
quality of the travel time data and the accuracy of the
velocity model.

» High-quality travel time data with an incorrect velocity
model, can yield location that is precise (small uncertainty),
but inaccurate in that the resulting location is not where
earthquake occurred.

» Conversely, an accurate velocity model and poor travel time
data give “relatively” accurate and imprecise location.
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Improving accuracy and precision

* Accuracy can be improved by using
different measuring tools, ideally
calibrated against each other.

* Precision can be improved by making
multiple measurements, ideally by
different people.
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Complications

* For example, an earthquake is (in most cases) a non-
repeatable experiment, so we cannot make additional
measurements.

 Estimating depth from travel times and waveform
modeling are only partially independent — both can be
biased similarly by incorrect assumptions about near
source mechanisms.

* A further complication is that different methods can
measure related but not identical entities. For example,
finite source modeling from near-field strong-motion
recordings, teleseismic waveforms, and geodetic
measurements often differ with each other.

+ Can you provide other examples?
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Figure 4.5-10: Slip inversions for the 1994 Northridge earthquake using
different data sets.
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Systematic error

* Most discussions focus on random errors because they are easy to
estimate from the scatter of measurements.

[t appears that assessments of the formal or random uncertainty
often significantly underestimate the systematic error, so the
overall uncertainty is dominated by the unrecognized systematic
error and thus larger than expected.

* Measurements of a quantity often remains stable for a while, then
suddenly change by much more than the previously assumed
uncertainty.

+ Systematic biases are difficult to detect, but sometimes are
identified from discrepancy between different approaches.
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Random Error

* We estimate a quantity x from multiple
measurements, x; (due to noise and limitations
of the measurements).

* With enough measurements, a pattern

generally emerges in which the values x; are
distributed around x.

* If we neglect system errors of measurements,
we can estimate x from the measured value x,,
and associated uncertainties.
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Figure 6.5-1: Gaussian distribution.
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Reducing errors by stacking , y
w=lim | 23
1
* One of the most useful methods for improving measurements from N—w| N4
seismological data: stacking v
» Stacking: taking multiple measurements and averaging them. 2 _ hm 1 2
- B i h 1 times from diff o = 72(%_“)
Yy averaging measurements such as travel times from different N_>w N ¢
seismograms. i=1
— By adding many seismograms and then estimating parameters. o ‘2 = O—2 / N
u

+ Stacking will have two effects:
— Itimproves precision by reducing the effects of random noise in the data.

— Ifthe data are averaged in special ways, the precision, and perhaps accuracy,
can be improved by suppressing some features in the data while enhancing
other desired features.

2/14/13 zpeng Seismolgy Il

For stacking, the variance of the mean is 1/N times the variance of

the individual measurements. Hence making N measurements reduces

the standard deviation of the mean by 1/vN

*This is the basic idea behind stacking, averaging multiple
measurements of some quantity yields an estimate that a smaller
uncertainty than the individual measurements.
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Example of stacking

 Stacking in exploration geophysics

* Stacking to obtain reliable deep Earth
structure

» Stacking to estimate seismic source
properties
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Figure 3.3-10: Cartoon geometry of a multichannel seismic reflection profile.

5 10

Offset =6

r=4 =12
>

Offset =8
2/14/13




Figure 3.3-11: b y T iver, midpoint, and offset.

s Stacking in exploration geophysics

o Figure 3.3-13: Cartoon of the four different gather types.
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Figure 3.3-15: Diagram of the normal moveout correction.
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Figure 3.3-16: Cartoon of CMP stacking and velocity analysis.

Offset —» Velocity —>

| B wave

normal moveout

5 o d, d, d; d; ds X Vi V; v
2 — (2702 4 2\12 L
T(x)=ty=(x/V"+15)" - ) o e i
A hyperbolic time shift $ Reflected™*~§ t &+ S
. . . = wave .
lines up reflections with & . g ' n
hyperbolic travel time 2 8
S o
curves (analogous to the Normal moveout  Offset, x g 7 2
. . '3
reduced travel time plot). & Peak power
defines correct l
stacking velocity
L S O
3
£
£
2/14/13 zpeng Seis 2/14/13 zpeng Seismolgy Il 22
Figure 3.3-19: CMP stacking for flat and dipping layers.
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Figure 6.5:21 Results of drawing N samples from a Gaussian parent distribution.
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Figure 3.5-10: Ray paths for additional core phases.
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Figure 6.6-19: Example of records from the California regional networks
for a South American earthquake.
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Figure 6.5-6: Stacking global seismograms to produce record sections. Figure 2.7-4: Six-hour stacked IDA record section.
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Figure 2.7-4: Six-hour stacked IDA record section.
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Stacking for reliable earthquake spectra

Prieto et al. (JGR, 2004)
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Two-step stacking procedure [Vidale et al., 1994]
to isolate source and site spectra
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Assuming an average strain drop of 10”-4
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Stacking for source time function (Vidale and Houston, Nature, 1993)
a P waveforms from 21 December 1983 event
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Example of stacking using SAC sacStack

» The easiest way is to use the command
“addf” in SAC:
— SAC>r wfl.sac
— SAC> addf wf2.sac
- SAC> ...
— SAC>div 10
— SAC> w stack.sac
— # Note: the data has to be the same length
 Another way is to use my own command:
sacStack
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* usage: sacStack [-E(t(0-9,-5(b),-3(0),-2(a))|vel)] [-N] [-
Q] [-Rt1/t2] [-Sbaz/p] -Ooutput_file (sac_traces in the
argument list or from the stdin)

- -E: align with a time mark or with an apparent
velocity (b)

- -N: normalize (off)

- -Q: square traces before stacking (off)

- -R: time window t1 and t2

- -S: set baz and user0 (p) in head

* Example:
— sacStack —Et-3 —R0/20 —Ostack.sac wf*.sac
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This Time

* Waveform stacking

zpeng Seismolgy Il

43

2/14/13

Next Time

* Array analysis
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