

Finite length signals

• Using the sifting properties, we obtain

$$\begin{split} G(\varpi) &= \frac{1}{2\pi} \int_{-\infty}^{\infty} B(\varpi') \left[\int_{-\infty}^{\infty} F(\varpi'') \delta(\varpi - \varpi' - \varpi'') d\varpi'' \right] d\varpi' \\ &= \frac{1}{2\pi} \int_{-\infty}^{\infty} B(\varpi') F(\varpi - \varpi') d\varpi' = \frac{1}{2\pi} B(\varpi) * F(\varpi) \end{split}$$

• Hence, the effect of multiplying a time series by a window function is that the spectrum of the time series is convolved with the spectrum of the window function.

zpeng Seismolgy II

• This is what is expected!

6

f(t) is a sine wave. What's the effect?

Taking a finite length of record "smears" the delta functions of the infinite length record's spectrum into boader peaks with side lobes.

Input signals contains different frequencies

The frequency resolution, the minimum separation in frequency for which two peaks can be resolved, is proportional to the reciprocal of the total length.

8

"Uncertainty principle" in time and frequency domains

9

- The product of the "widths" in the two domains is constant.
- For a time domain record with duration T, the resolution in the frequency domain is proportional to 1/T.
- Perfect resolution in frequency requires infinite record length in time.
- Infinite bandwidth in frequency is needed to represent a time function exactly.

1/21/13

1/21/13

zpeng Seismolgy II

Tapered boxcar functions

The side lobes for the tapered window are reduced, but the central peak is less sharp.

Similarly, band-pass filters are often tapered in the frequency domain.

Cross-correlation

$$C(L) = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} x(t) f(t+L) dt$$

- *C*(*L*), the cross-correlation of *x*(*t*) and *f*(*t*), measures the similarity between *f*(*t*) and the later portions of *x*(*t*) by shifting *f*(*t*) by different lag times, *L*, and evaluating the integral of the product as a function of *L*.
- We often set *T* to an appropriate value, due to finite length of the data.

11

Auto-correlation

• A special case of the cross-correlation is the autocorrelation.

$$R(L) = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} f(t) f(t+L) dt$$

 The auto-correlation is maximum at zero lag, and is an even function of the lag.
 Figure 6.3-12: The auto-correlation is maximum at zero lag and is an even function of the lag.

$$R(L) = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} f(t) f(t+L) dt$$

• Can be expanded using the inverse Fourier transform

Auto-correlation and amplitude spectrum

• If we define the power spectrum, a normalized version of the amplitude spectrum

$$P(\omega) = \lim_{T \to \infty} \frac{1}{T} \left| F(\varpi) \right|^2$$

• Then the auto-correlation is the inverse Fourier transform of the power spectrum:

$$R(L) = \frac{1}{2\pi} \int_{-\infty}^{\infty} |P(\varpi)| e^{i\varpi L} d\varpi$$

• As a result, the auto-correlation of a function contains information only about its amplitude spectrum, but not about its phase.

zpeng Seismolgy II

14

16

Cross-correlation and convolution

$$y(L) = \int_{-\infty}^{\infty} x(t) f(L-t) dt = x(t) * f(t)$$

$$C(L) = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} x(t) f(t+L) dt = x(t) \cdot g(t)$$

The cross-correlation is similar in nature to the convolution of two functions. Whereas convolution involves reversing a signal, then shifting it and multiplying by another signal, correlation only involves shifting it and multiplying (no reversing).

13

1/21/13

Figure 3.3-30: Auto-correlation of a Vibroseis sweep signal.

If w(t) is a long signal, use cross-correlation.

The cross-correlation quantifies similarities between two time series f(t) and g(t):

$$c(L) = \lim_{T \to \infty} \frac{1}{T} \int_{-T}^{T} f(t+L)g(t)dt$$

- 1. At least two samples per wavelength are needed to reconstruct a sinusoid signals accurately.
- 2. For a sampling interval of Δt , the highest resolvable frequency is $f_N = 1/(2\Delta t)$, known as the Nyquist frequency.
- 3. Any frequencies higher than the Nyquist frequency are aliased into lower ones, when the data are sampled. This cannot be 'unaliased'.
- 4. Generally, seismic data are filtered with an analog anti-aliasing filter to remove frequencies above the Nyquist frequency before sampling to produce the digital seismogram.

1/21/13

1/21/13

Due to the periodicity of the discrete Fourier transform, the second half of the values of the frequency amplitude spectrum, at angular frequency greater than the Nyquist angular frequency $(N/2)\Delta\omega$, represents the negative frequencies.

30

