EAS 4803/8803 - Observational
Seismology

Lec#3: Linear Systems (cont.)
Dr. Zhigang Peng, Spring 2013

August 29, 2005 - 17.00-17.30 ¢

Last Time

* Linear systems
— Basic models
— Convolution and deconvolution modeling
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This Time

* Linear systems

— Finite length signals
— Correlation
* Discrete time series & transforms

Reading: Stein and Wysession Chap. 6.3-6.4
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Figure 6.2-3: Amplitude spectra for the body and surface wave segments
from a large earthquake.
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Finite length signals

* Consider a window function b(¥). Its effect on
the data f{¢) is represented by multiplying f{¢) by
b().

G(w)= f b(t) f(t)e ™ dt

G@)= f[ fB(W e dw’ Hz; }F(w")ei”"'dw”] ey

- iiB(w') :}:;F(w ") Z;ie"””"”"*"“’"dt]dw” dw’

=i:£B(w')
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fF(w”)é'(w -’ —w”)dw"}dw’

Finite length signals

 Using the sifting properties, we obtain

'

Gw)= ﬁ}B(W') }F(w")é(w -w' -w")dw" |dw
= éiB(m')F(w -w')dw' = éB(w)*F(w)

* Hence, the effect of multiplying a time series by a
window function is that the spectrum of the time
series is convolved with the spectrum of the
window function.

* This is what is expected!
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Effects of a boxcar window function

b(t)=1 for-T<t<T,
=0, otherwise.

Its Fourier transform is:
e™ . 2sin@T 2TsinwT
—| ;= =
—-iw w wT
Figure 6.3-8: A boxcar function in the time and frequency domains.
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Figure 6.3.9: Effects of windowing time signals on the amplitude spectra.

Z 0

f(?) is a sine wave.
What’s the effect?

Taking a finite length of record
“smears” the delta functions of
the infinite length record’s
spectrum into boader peaks with
side lobes.

d 203]

Input signals contains
different frequencies

The frequency resolution, the
minimum separation in frequency
for which two peaks can be
resolved, is proportional to the
reciprocal of the total length.

| DAL
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“Uncertainty principle” in time and
frequency domains d w»"ﬁ

. . W. Heisénberg
* The product of the “widths” in the two

domains is constant.

Tapered boxcar functions
W(t)=%[l+cosw],for—T<t< -T+T,

=l[1+c057”(t_T+T‘)

1

},forT—Tl<t<T

Figure 6.3-10: Effects of tapering a boxcar function on the amplitude spectrum.

* For a time domain record with duration T, - e The side lobes for
the resolution in the frequency domain is sorr the tapered window
roportional to 1/T uncten are reduced, but the
prop o ) e ol central peak is less
* Perfect resolution in frequency requires B e sharp.
infinite record length in time. » ' 1| Similarly, band-pass
* Infinite bandwidth in frequency is needed to forba I | | filters are often
represent a time function exactly. . b tapered in the
™ ey frequency domain.
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- Auto-correlation
Cross-correlation uto-correlatio
* A special case of the cross-correlation is the auto-
correlation.
172 1772
C(L)=lim— [x(2)f (¢ + L)ds R(L)=lim— [f(0)f(t+L)dr
=T 5, r—==T
- -T/2
* C(L), the cross-correlation of x(¢) and f{¢), * The auto-correlation is maximum at zero lag, and
measures the similarity between f{¢) and the is an even function of the lag.
later portions of x(#) by shifting f{¢) by Dewseaamme sisconvisnion s at zero lag and is an even
different lag times, L, and evaluating the
integral of the product as a function of L.
. f(t)
* We often set 7 to an appropriate value, due -
to finite length of the data.
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Auto-correlation and amplitude spectrum

T/2

1
R(L) = lim - [r@f(e+L)dt

-T/2

» Can be expanded using the inverse Fourier transform

T/2

R(L)=lim—— A

-T/2

3

F(w)e™ " Pdw |dt

3 1 p iwL e iwt
= ;E?oﬁiF(w)e [J;{(t)e dt |dw

w

= limifF(w)F(—w)e"”"dw

1= 27T J_
%
. 1 2 oL
= llm—ﬂF(w)‘ e dw
T== 27T
e
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Auto-correlation and amplitude spectrum

+ If we define the power spectrum, a normalized version of
the amplitude spectrum

P(w) = ;i_r};%‘F(w)‘z

¢ Then the auto-correlation is the inverse Fourier transform
of the power spectrum:

R(L) = i}‘P(w) et dw

¢ As aresult, the auto-correlation of a function contains
information only about its amplitude spectrum, but not
about its phase.
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Figure 6.3-13: A function has the same auto-correlation if it is reversed in time.

3
f(2) = R(L)
* *omeeeee- = = ot
¥ =
3
f(t)
F — R(L)
* - > ! T r ot
T 22
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Cross-correlation and convolution

y(L) = [x(@)f(L-t)dt = x(£)* f ()

-0

T/2

C(L) = }lglo% [x(@).f (¢ +Lydt = x(2) * g(t)

-T/2

The cross-correlation is similar in nature to the
convolution of two functions. Whereas
convolution involves reversing a signal, then
shifting it and multiplying by another signal,
correlation only involves shifting it and

multiplying (no reversing).
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Figure 6.3-11: Using ¢ lation to find a differential SS-S travel time.

Application of the cross-
correlation to determine the
travel time difference between
the direct S and reflected S\S
phases.
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Figure 3.3-30: Auto-correlation of a Vibroseis sweep signal.

Sweep signal Klauder wavelet

|

-~ Lag time
0

If w(r) is a long signal, use cross-correlation.
The cross-correlation quantifies similarities between two time series f(¢) and g(7):

c(L)= r“-l.“m T

T
I St + L)g(r)de
-7

Figure 3.3-30: Auto-correlation of a Vibroseis sweep signal.

Sweep signal Klauder wavelet

|

w Lag time
0

If wi(r) is a long signal, use cross-correlation.

Figure 3.3-28: as the of a source pulse
with a reflector series.
Geological Reflector Input  _  Seismic
section series pulse trace

¢

5 ¢
o 1 1 = e
The cross-correlation quantifies similarities between two time series f(¢) and g(1): LL'
gox ; —
c(l)= rllm 7 S+ L)g(t)dt
o -7 Convolution of w(r) and r(¢):
For example, the cross-correlation of w(¢) with itself (called auto-correlation) is: T
r s()y=wt)*r(t)= J w(t = 7)r(r)dr
G | . . s : e
a(l)= lim 7 J. S+ L)f(t)dr (which is always maximum at zero lag)
diide < £ S(0) = W(w)R(0)
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Figure 3.3-31: Analysis of a Vibroseis record. a August 29, 2005 - 17:00-17:30 I Search for low-frequency
Zero 8s - earthquakes within non-volcanic
Master signal ~ IMme Vibrator drive signal 18
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tremors by a waveform match-
filter technique
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Early aftershocks of the 2004 Parkfield

Seconds since the Parkfield mainshock

We found 11 times more
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Figure 6.4-1: Use of a Dirac comb in sampling a time signal.
Aliasing in the frequency domain
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Figure 6.4-3: of aliasing in ling a time signal at less than two . ot . O
Sesninlos ot viavetenith: Due to the periodicity of the discrete Fourier transform, the
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General rule:

1.

2.

121113

At least two samples per wavelength are needed to reconstruct a
sinusoid signals accurately.

For a sampling interval of At, the highest resolvable frequency is
Jfyv=1/(24f), known as the Nyquist frequency.

Any frequencies higher than the Nyquist frequency are aliased
into lower ones, when the data are sampled. This cannot be
‘unaliased’.

Generally, seismic data are filtered with an analog anti-aliasing
filter to remove frequencies above the Nyquist frequency before
sampling to produce the digital seismogram.
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Figure 6.4-4: Relation between frequency amplitude spectrum and discrete
Fourier transform (DFT).

Continuous frequency ampitude spectrum
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What we have learned today

* Linear systems

— Finite length signals

Next class

» Seismometers and seismic network

— Correlation
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