EAS 8803 - Obs. Seismology Lec#2: Fourier Transform/Linear System

Dr. Zhigang Peng, Spring 2013

Last Time

- Course Introduction
 - Class logistics, requirements and policies
 - Class schedule
- Introduction to digital signal processing and its relation to seismological research
- Fourier Series/Fourier Transform

Reading: Stein and Wysession Chap. 6.1 - 6.2

1/10/13 zpeng Seismolgy II

Today's Outline

- Fourier transforms
- Linear systems

Reading: Stein and Wysession Chap. 6.2-6.3

1/10/13 zpena Seismolav II

What is a Delta Function?

• The Dirac delta function, or δ function, is (informally) a generalized function depending on a real parameter such that it is zero for all values of the parameter except when the parameter is zero, and its integral over the parameter from $-\infty$ to ∞ is equal to one. (From wipipedia)

1/10/13

3

Delta function

Three ways to define it

Times ways to define it
$$\delta(t - t_0) = \lim_{\sigma \to 0} \frac{1}{\sigma \sqrt{2\pi}} \exp\left[\frac{-1}{2} \left(\frac{t - t_0}{\sigma}\right)^2\right]^{\frac{20}{90}}$$

$$f(t_0) = \int_{-\infty}^{\infty} f(t)\delta(t - t_0)dt$$

$$\int_{-\infty}^{\infty} f(t)\delta(t - t_0)dt$$

$$\delta(t - t_0) = dH(t - t_0)/dt$$

1/10/13

Fourier transform of the delta function

• To find the Fourier transform of the delta function, we use the definition of the transform with $f(t) = \delta(t - t_0)$

$$F(\varpi) = \int\limits_{-\infty}^{\infty} e^{-i\varpi t} \delta(t-t_0) dt = e^{-i\varpi t_0}$$

- The amplitude spectrum is $|F(\varpi)| = (e^{-i\varpi t_0}e^{i\varpi t_0})^{/2} = 1$
- The phase spectrum is $\phi(\varpi) = \varpi t_0$

1/10/13 6 zpeng Seismolgy II

Figure 6.2-6: Amplitude and phase spectra of the Fourier transform of a

• If the delta function is at time zero,

$$F(\varpi) = \int_{-\infty}^{\infty} e^{-i\varpi t} \delta(t) dt = 1$$

1/10/13

zpeng Seismolgy II

Fourier transform of the delta function

- The delta function's amplitude spectrum has unit amplitude at all frequencies.
- The output from a linear time-invariant system with delta function input is called impulse response (in time domain), and transfer function (in frequency domain).
- The inverse transform of the delta function

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-i\omega t_0} e^{i\omega t} d\omega = \delta(t - t_0)$$

1/10/13

zpeng Seismolgy II

Figure 6.2-7: Fourier transform of a delta function as the sum of sinusoids of all frequencies.

5

a+b+c+d+e

a b

Time

1/10/13

zeeng Seismolay II

Delta function in the frequency domain

A delta function at angular frequency
 ₀ has an inverse transform

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \delta(\varpi - \varpi_0) e^{i\varpi t} d\varpi = \frac{1}{2\pi} e^{i\varpi_0 t}$$

 So we can express the delta function in terms of its Fourier transform

$$\delta(\varpi - \varpi_0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\varpi_0 t} e^{-i\varpi t} dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i(\varpi_0 - \varpi)t} dt$$

1/10/13

zpeng Seismolgy II

Delta function in the frequency domain

- Delta function in angular frequency give the spectra of sinusoids with a single frequency.
- For example, a cosine with frequency ϖ_0

$$f(t) = \cos \varpi_0 t = (e^{i\varpi_0 t} + e^{-i\varpi_0 t})/2$$

• Has a Fourier transform

$$F(\varpi) = \frac{1}{2} \int_{-\infty}^{\infty} (e^{i\varpi_0 t} + e^{-i\varpi_0 t}) e^{-i\varpi t} dt = \frac{1}{2} \int_{-\infty}^{\infty} (e^{i(\varpi_0 - \varpi)t} + e^{-i(\varpi_0 + \varpi)t}) dt$$

$$F(\varpi) = \pi [\delta(\varpi - \varpi_0) + \delta(\varpi + \varpi_0)]$$

1/10/13 zpeng Seismolgy

Linear Systems

- A "system" is a general representation of any device or processes that takes an input signal and modifies it.
- A "linear system" is is defined by the following diagram, and is previously referred as the principle of *superposition*.

Figure 6.3-1: Definition of a linear system

1/10/13

11

zpeng Seismolgy II

12

10

Linear Systems

- The earth generally behaves as a "linear system" when transmitting seismic waves.
- Hence, linear system models are used in a wide variety of seismological applications.
- Fourier analysis is a natural tool for studying linear systems because Fourier transform has the same linear properties.
- Can you think of any cases when the Earth is behaving as a "nonlinear system"?

13

1/10/13 zpeng Seismolgy II

Impulse Response of a Linear System

Linear Systems

• The output spectrum of an arbitrary input signal

$$Y(\varpi) = X(\varpi)F(\varpi)$$

• The output in the time domain y(t) can be found

$$y(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\varpi) F(\varpi) e^{i\varpi t} d\varpi$$

- For the impulse $x(t) = \delta(t)$, $X(\varpi) = 1$, y(t) = f(t)
- For a harmonic input signal $x(t) = e^{i\omega_0 t}$
- The transform is the delta function in frequency domain $X(\varpi) = 2\pi\delta(\varpi - \varpi_0)$. The output is

$$Y(\varpi) = \frac{1}{2\pi} \int_{-\infty}^{\infty} 2\pi \delta(\varpi - \varpi_0) F(\varpi) e^{i\varpi t} d\varpi = F(\varpi_0) e^{i\varpi_0 t}$$
zpeng Seismolgy II

Relation between the input/output and the impulse response

$$y(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\varpi) F(\varpi) e^{i\varpi t} d\varpi$$

$$y(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} x(\tau) e^{-i\varpi \tau} d\tau \right] \left[\int_{-\infty}^{\infty} x(\tau') e^{-i\varpi \tau'} d\tau' \right] e^{i\varpi t} d\varpi$$

$$y(t) = \int_{-\infty}^{\infty} x(\tau) f(\tau') \left[\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-i\varpi(t-\tau'-\tau)} d\varpi \right] d\tau d\tau'$$

$$y(t) = \int_{-\infty}^{\infty} x(\tau) \left[\int_{-\infty}^{\infty} f(\tau') \delta(t-\tau'-\tau) d\tau' \right] d\tau$$

$$y(t) = \int_{-\infty}^{\infty} x(\tau) f(t-\tau) d\tau \qquad y(t) = x(t) * f(t)$$
1/10/13 zpeng Seismolgy II

Convolution and deconvolution modeling in seismology

- Linear system ideas are pervasive in seismology.
- If a signal x(t) goes through two linear systems in succession with impulse response f(t) and g(t), the output is either a convolution in the time domain, or the product of the transfer functions in the frequency domain.

Convolution and deconvolution modeling in seismology

$$u(t) = x(t) * g(t) * i(t)$$

Figure 6.3-5: Seismogram as the convolution of the source, structure, and instrument signals.

Response of a system in space by convolutions

1/10/13 zpeng Seismolgy II 21

The Green's function

• The displacement at a point x and time t is

$$u(x,t) = \iint G(x-x';t-t')f(x',t')dt'dV'$$

- Where G(x x'; t t') is the Green's function, the impulse response to a source at position x' and time t', and f(x', t') is the distribution of the seismic sources.
- In a general medium

$$u(x,t) = \iint G(x,t;x',t') f(x',t') dt' dV'$$

1/10/13 zpeng Seismolgy II 22

Inverse filter

• We assume that a seismogram s(t) results from convolution of a source pulse w(t), and an earth structure operator r(t).

$$s(t) = w(t) * r(t)$$

$$S(\varpi) = W(\varpi)R(\varpi)$$

23

• We can create an inverse filter

$$w^{-1}(t) * w(t) = \delta(t)$$

• The Fourier transform of the inverse filter is just $1/W(\omega)$, so the deconvolution can be done by dividing the Fourier transforms

$$S(\varpi)/W(\varpi) = R(\varpi)$$

1/10/13 zpeng Seismolgy II

Water-level deconvolution

- For $S(\varpi)/W(\varpi) = R(\varpi)$
- What happens if $W(\omega)$ is very small?

http://eqseis.geosc.psu.edu/~cammon/HTML/RftnDocs/seq01.html

1/10/13 zpeng Seismolgy II

24

Example of deconvolution

Example of deconvolution

What we have learned today

- · Linear systems
 - Basic models
 - Convolution and deconvolution modeling

Next time

- Finite length signals
- Correlation
- Discreet time series and transforms

1/10/13 zpeng Seismolgy II 27

Reading: Stein and Wysession Chap. 6.4

1/10/13 zpeng Seismolgy II

Finite length signals

• Consider a window function b(t). Its effect on the data f(t) is represented by multiplying f(t) by b(t).

$$G(\varpi) = \int_{-\infty}^{\infty} b(t) f(t) e^{-i\varpi t} dt$$

$$G(\varpi) = \int_{-\infty}^{\infty} \left[\frac{1}{2\pi} \int_{-\infty}^{\infty} B(\varpi') e^{i\varpi't} d\varpi' \right] \left[\frac{1}{2\pi} \int_{-\infty}^{\infty} F(\varpi'') e^{i\varpi't} d\varpi'' \right] e^{-i\varpi t} dt$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} B(\varpi') \left[\int_{-\infty}^{\infty} F(\varpi'') \left[\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-i\varpi t + i\varpi' t + i\varpi' t} dt \right] d\varpi'' \right] d\varpi'$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} B(\varpi') \left[\int_{-\infty}^{\infty} F(\varpi'') \delta(\varpi - \varpi' - \varpi'') d\varpi'' \right] d\varpi'$$

1/10/13 zpeng Seismolgy II 29

Finite length signals

28

• Using the sifting properties, we obtain

$$G(\varpi) = \frac{1}{2\pi} \int_{-\infty}^{\infty} B(\varpi') \left[\int_{-\infty}^{\infty} F(\varpi'') \delta(\varpi - \varpi' - \varpi'') d\varpi'' \right] d\varpi'$$
$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} B(\varpi') F(\varpi - \varpi') d\varpi' = \frac{1}{2\pi} B(\varpi) * F(\varpi)$$

- Hence, the effect of multiplying a time series by a window function is that the spectrum of the time series is convolved with the spectrum of the window function.
- This is what is expected!

1/10/13 zpeng Seismolgy II 30

Effects of a boxcar window function

$$b(t) = 1$$
 for $-T < t < T$,
= 0, otherwise.

Its Fourier transform is:

$$B(\varpi) = \int_{-i\varpi}^{\infty} e^{-i\varpi t} dt = \frac{e^{-i\varpi t}}{-i\varpi} \Big|_{-T}^{T} = \frac{2\sin\varpi T}{\varpi} = \frac{2T\sin\varpi T}{\varpi T}$$

Figure 6.3-8: A boxcar function in the time and frequency domains.

f(t) is a sine wave. What's the effect?

Taking a finite length of record "smears" the delta functions of the infinite length record's spectrum into boader peaks with side lobes.

Input signals contains different frequencies

The frequency resolution, the minimum separation in frequency for which two peaks can be resolved, is proportional to the reciprocal of the total length.

eismolgy II

32

"Uncertainty principle" in time and frequency domains

• The product of the "widths" in the two

• The product of the "widths" in the two domains is constant.

- For a time domain record with duration T, the resolution in the frequency domain is proportional to 1/T.
- Perfect resolution in frequency requires infinite record length in time.
- Infinite bandwidth in frequency is needed to represent a time function exactly.

1/10/13 zpeng Seismolgy II

33

Tapered boxcar functions

$$W(t) = \frac{1}{2} \left[1 + \cos \frac{\pi (t + T - T_1)}{T_1} \right], for - T < t < -T + \frac{1}{2} \left[1 + \cos \frac{\pi (t - T + T_1)}{T_1} \right], for T - T_1 < t < T$$

The side lobes for the tapered window are reduced, but the central peak is less sharp.

Similarly, band-pass filters are often tapered in the frequency domain.

3