
Standard for the Exchange of Earthquake Data - Reference Manual • 141

A
ppendix

C

Appendix C

Appendix C: Specifying and Using 
Channel Response Information

Contributed by C.R. Hutt

Introduction
SEED volumes usually use complex-valued functions of frequency in response functions. Usually, these functions 
will not be single expressions, but rather the products of several expressions.  Most seismic systems can be regarded as 
cascades of stages — for example, a seismometer, followed by an amplifier, followed by an analog filter, followed by 
an analog/ digital converter, followed by a digital filter.  A blockette’s stage sequence number shows the order of the 
stages, as shown in figure 1 below:

Figure 1:  Example of a sequence of stages.

Before the age of high speed digital computers and digital signal processing (DSP) chips, all low-pass filtering (for the 
purpose of preventing aliasing) was performed in the analog stages before digitizing.  The digitizer would operate at 
a fairly low sample rate equal to the sample rate being recorded.  Typically, the corner frequency of the low-pass filter 
would be 1/8 to 1/20 of the sample rate (1/4 to 1/10 of the Nyquist frequency).  Therefore, the low-pass anti-alias filter 
response would typically begin to attenuate at frequencies well within the band of interest.

Modern seismic data acquisition systems make use of over-sampling and decimation (to grossly over-simplify the inner 
workings of high resolution ADC’s)  to achieve high resolution.  This technique relaxes the analog anti-alias filtering 
requirement and moves the low-pass filtering job into the digital domain.  Decimation (sample rate reduction) must be 
preceded by sufficient low-pass filtering to prevent aliasing at the new lower sample rate.  Many modern high resolu-
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tion ADC’s include two or more stages of Finite Impulse Response (FIR) filters to accomplish this task.  These may be 
followed by further low-pass filter and decimate stages within the data acquisition computer to derive lower sample rate 
data streams (such as deriving Long Period data from Broadband data).

FIR filters are simply weighted averages of some number of data samples — the “weights” are the coefficients specified in 
Blockette (54) (for a “D” type stage).  FIR  filters are usually designed to approximate a “boxcar” response.  That is, they 
typically have a very flat in-band response and a sharp, steep cut-off at their corner frequency, which may be set at 70% to 
90% of the Nyquist frequency.  In-band ripple is usually only a few percent.  Also, FIR filters are usually designed to have 
linear phase, and the data acquisition systems usually time-tag the data so that the phase shift appears to be nearly zero.

All of this means that the average data user probably doesn’t need to correct for the effect of such FIR filters.  
Examples of some common FIR filter amplitude responses for 20 sps data are shown in Figures 2 through 5 following.  
Note that in-band ripple can be several percent, but corner frequencies (-3 db points) are usually very close to the Nyquist 
frequency (which is 1/2 the sample rate).  Also note that stop band gain can vary significantly: from -75 db to -120 db in 
these three examples.

It was previously stated that modern data acquisition systems using digital FIR filters usually time tag the data so that the 
filter delay (phase lag) appears to be nearly zero.  Figure 2.B. contains a plot of the phase shift that results when the data 
are time tagged in such a way as to correct precisely for the theoretical filter delay (which is 1.625 seconds in this case).  
As is stated later in this Appendix, Blockette [57] should always be used when specifying a digital filter to completely 
describe how the time tag is applied.  Some data acquisition systems (those installed through August 1992 by the USGS) 
correct for the FIR filter delays, resulting in near-zero phase shift, but did not specify this in a Blockette [57].  A data user 
may take the absence of Blockette [57] to mean that there exists a phase lag in the data that is really not there in these 
systems.  That is, a Fourier transform of the FIR coefficients would indicate a pure delay, when in fact there is really no 
delay.  The absence of Blockette [57] in USGS-supplied data will be remedied as soon as possible after August 1992.  
Anyone specifying digital filters in SEED format should always include the complete specification, including Blockette 
[57].
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Figure 2A

Figure 2b

Figure 2: 	Amplitude response of combined FIR filters used in Martin-Mariette digitizers of IRIS/USGS IRIS-2 
systems, 20 sps (BB) data. Gain has been normalized to OdB at O Hz (DC). Note the different scales in the 
two figures above.



Appendix C

  144 • Standard for the Exchange of Earthquake Data - Reference Manual

   

Figure 3A

Figure 3B

Figure 3: 	Amplitude response of combined FIR filters used in “Quantagrator” model digitizers built by 
Quanterra, Inc. for 20 sps (BB) data. Gain has been normalized to Odb at OHz (DC).
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Figure 4A

Figure 4B

Figure 4:	  Amplitude response of combined FIR filters used in Q380 and Q680 model digitizers built by 
Quanterra, Inc. for 20 sps (BB) data. Gain has been normalized to Odb at O Hz (DC).
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Figure 5A

Figure 5B

Figure 5: 	Amplitude response of Ormsby FIR filter used in the Reftek 24-bit digitizers of the IRIS/IDA 
IRIS-3 systems. 20 sps (BB) data. Gain is 0 dB at 0 Hz (DC). Note the different scales in the two figures 
above.



Appendix C

Standard for the Exchange of Earthquake Data - Reference Manual • 147

A
ppendix

C

In Figure 1, the seismometer response would have stage sequence number 1 and the digital filter would have stage 
sequence number 5. If there are K stages and the complex frequency response of the i-th one is G

i
 (f), the system 

response is:

 K (1)

∏  Gi (f)

 i=1

This appendix will show how to represent the stages (G
i
’s) using SEED blockettes. In Figure 1, each stage can be 

described by one or a combination of blockettes. Analog stages may be partially described by either Blockette [55] 
(Response List) or by Blockette [56] (Generic Response), but must also be described fully by using either the Poles and 
Zeros Blockette [53] or the Coefficient Blockette [54] along with [58] Channel Sensitivity/Gain Blockette:

Figure 6: Example Analog Stage Using Poles and Zeros Representation

Note that A
o
 is chosen so that, at the normalization frequency, f

n
, |H(i2πf

n
) | A

0
 = 1.0. Also note that it is most conve-

nient, and strongly recommended, that f
n
 = f

s
.

Figure 7: Example Analog Stage Using Coefficients Representation

Note that the coefficients of H(s) are chosen so that at the frequency of sensitivity f
s
.|H(i2πf

s
).=1.0. Here f

s
 should be 

equal to f
s
 and f

n
 for all previous stages in the sequence, if possible.

Figure 8: Example Digital Stage Using Coefficients Representation

The coefficients are chosen so that at the frequency of sensitivity f
s’
 |H (e2πifs∆t)| =1.0. Here, f

s
 should be equal to f

s
 and f

n
 

for previous analog stages in the sequence, if possible. If the digital stage is a FIR filter, it is also convenient to use f
s
 = 

0 Hz (DC), because the DC gain of a FIR filter is just the sum of the coefficients. However this should only be done if 
the DC gain is within 1% or 2% of the gain at f

s
 in previous stages.
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Conventions
At any frequency, the modulus (absolute value) of the complex response function is the amplitude response of that stage.  
The phase of the complex response function is the phase response of that stage, with negative phase  (output phase 
lagging the input) indicating a delay. Analog stages are represented by the Laplace transform of the linear system impulse 
response:

H (s) = ∫
0
∞ h (t) e-st d t (2)

 

 h(t) is called the stage impulse response function, and its transform, H (s), is called the stage transfer function. H(s) may 
be specified in polynomial form (Blockette [54]) or in factored form (Blockette [53]).

Digital stages are represented by the Z-transform of the sampled time series corresponding to the stage impulse response:

∞
H (z) = ∑ h

m  
z-m (3)

                                                        m = -∞

h
m
 is called the stage impulse response function, and its transform, H (Z), is called the stage transfer function.  H(z) may 

be specified in polynomial form (Blockette [54], usually used for FIR filters) or in factored form (Blockette [53], usually 
used for IIR filters).

Normalization
For most stages, the frequency response is given in the form:

G (f) = S
d
  R (f) (4)

where R (f) is a function of frequency (usually complex-valued), specified by some combination of Blockettes [53], [54], 
[55], [56], and [57] (see below for which combinations are preferred for particular systems).  R (f) is normalized so that 
| R (f

s
) | = 1.0, where f

s
 is the frequency specified in Blockette [58].  S

d
  is the stage gain at that frequency.  Using frequency 

response normalization helps by providing a check (you can compute G (f
s
) and make sure that it is indeed S

d
), and by 

keeping track of the response functions of analog systems.

In cases where G(f) corresponds to an analog-type stage, a Poles and Zeros type response Blockette [53] is normally used 
to specify this stage.  In this case, R(f)  is expressed in this form:

R (f) = A
0
 H 

p
 (s) (5)

where s = i 2 π f or s = i f (i = √ -1 ) as specified below equation (6) and H
p
 (s) represents the transfer function ratio of 

polynomials specified by their roots, as in equation (6). For proper normalization, we chose A
0
 such that | R(f

s
) | =1.0; that 

is A
0
 = 1/|H

p
(s

s
) |, where s

s
= i2πf

s
       or s

s
= i f

s
 (depending on whether we have represented the poles and zeros of Hp in 

terms of radians per second or Hz).

In cases where G(f) corresponds to an analog-type stage and the coefficient representation is used, as in equation (7), then 
the coefficients a

j
 and b

j
 of H

c
(s) are chosen such that H

c
(s

s
)|=1.0, where s

s
= i 2 π f

s
        or s

s
 = i f

s
 Hz.

When G(f) corresponds to a digital-type stage and is represented with poles and zeros, as is usually the case with IIR 
filters (those with feedback), we again chose A

0
 =1/|H

p
(z

s
)| where H

p
(z) is defined as the ratio of polynomials in equation 

(11), and z
s
 = e2 π i fs∆t, where ∆t is the sample interval and f

s
 is specified in the stage description.

 rad 
 sec
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Finally, when G(f) specifies a digital-type filter and is represented with coefficients, as is usually the case with FIR 
filters (those without feedback), the coefficients b

n
 of H

c
(z)  in equation (9) are chosen such that |H

c
(z

s
)| = 1.0, where z

s
 is 

defined as in the previous paragraph.

This normalization works for stages 1 through K. If Blockette [58] has a stage number of 0, SEED assumes that the 
sensitivity S

d
 given in field 4 of Blockette [58] applies to the system as a whole, at the frequency f

s
 given in field 5 

of Blockette [58]. Note that f
s 
should, if possible, be equal to the normalization frequency f

n 
given in any of stages 1 

through K. In fact, within any stage, f
s
 should be equal to f

n
. If no other stages are specified, SEED programs should 

conclude that this is our total knowledge of the system response. If we specify other stages, the stage-zero sensitivity 
will serve as a check on the sensitivity we can arrive at by multiplying together the responses G

1
, …, G

K
. In this case, 

the stage-zero sensitivity is not multiplied together with the gains of the other stages. Rather, the stage-zero sensitivity 
should be equal to the product of the gains of the other stages at frequency f

s
= f

n
. If we have not used the same frequen-

cies, f
s
 and f

n
, for all stages 1 through K, then we can only say that the product of the sensitivities for each stage may 

be approximately equal to the stage 0 sensitivity. Note that this idea is much more intuitive and easier to work with if f
s
 

and f
n
 are the same for all stages. 

A possible exception is when the stage is a low pass digital FIR filter. The stage sensitivity for a FIR stage may be 
stated at f

s
 = 0 Hz (DC) if the in-band ripple is less than say, 1 or 2%. The DC gain of an FIR filter is the sum of the 

coefficients and so is easy to calculate.

Analog Stages
The first part of any seismic sensor will be some sort of linear system that operates in continuous time, rather than 
discrete time.  Usually, any such system has a frequency response that is the ratio of two complex polynomials, each 
with real coefficients.  These polynomials can be represented either by their coefficients or by their roots (poles and 
zeros).  The latter is the preferred mode, but either is acceptable.

	 Pole-Zero Representation for Analog Stages

The polynomials are specified by their roots.  The roots of the numerator polynomial are the instrument zeros, and 
the roots of the denominator polynomial are the instrument poles. Because the polynomials have real coefficients, 
complex poles and zeros will occur in complex conjugate pairs.  By convention, the real parts of the poles and zeros are 
negative, which leads to the form of function given below.

The fullest possible specification will utilize Blockettes [53] and [58].  Blockette [53] will specify N zeros, r
1
, r

2
,…, r

N
, 

M poles p
1
, p

2
,…,p

M
, a normalization factor A

0
, and a reference frequency. The reference frequency is 1 radian/second 

if field 3 of Blockette [53] is the character A, and 1 Hz if field 3 of Blockette [53] is the character B.  Blockette [58] will 
specify a scaling factor S

d
.  Then at any frequency f (in Hz), the response is:

 N
∏ (s - r

n
)

G(f) = S
d
 A

0
n = 1               = Sd A0 Hp (s) (6)
 M

∏ (s - p
m
)

m = 1

where s = i 2 π f if the reference frequency is 1 radian/second, and s =i f if the reference frequency is 1 Hz.

Using two multiplicative coefficients, A
0
 and S

d
, in the equation above appears to be redundant, but we suggest that you 

partition the response by choosing A
0
 so that the modulus of A

0
 times the modulus of the ratio of polynomials equals 

1.0 at the normalizing frequency f
n
 (also specified in Blockette [53]); the S

d
 specified in Blockette [58] is then the stage 

gain at that frequency, so | G (f
n
) | = S

d
. This division allows Blockette [53] to remain the same for many systems, with 



Appendix C

  150 • Standard for the Exchange of Earthquake Data - Reference Manual

the small differences between them expressed by the single number S
d
 in Blockette [58]. This simplifies keeping track 

of system responses. The “frequency of sensitivity factor” in Blockette [58] (f
s
) should be the same as the normalizing 

frequency f
n
 in Blockette [53]. 

If Blockette [53] is omitted, SEED assumes that A
0
 will be 1. This would be appropriate for an amplifier with no signifi-

cant departure from a fixed gain S
d
, or for a stage about which nothing was known but its gain at one frequency. SEED 

allows these combinations of blockettes for a stage of this type: [53], [58] or [58] by itself. Blockette [58] by itself would 
correspond to an amplifier with a flat response.

	 Coefficient Representation for Analog Stages

The polynomials are specified by their coefficients. The fullest possible specification will utilize Blockettes [54] and [58]. 
Blockette [54] will specify N+1 numerator coefficients, a

0
, a

1
,…, a

N
, M +1 denominator coefficients b

0
, b

1
, …, b

M
. Blockette 

[58] will specify a scaling factor S
d
. Then, at any frequency f (in Hz) the response is:

 N
∑(a

n
 sn)

G(f) = S
d
 n = 0 = S

d
 H

c
 (s) (7)

M
∑(b

m
 sm)

m = 0

where s = i 2 π f if field 3 of [54] = A, and s = i f if field 3 of [54] = B.

As in the pole-zero case, the coefficient S
d
 appears to be redundant, but the response should be partitioned as described 

above by choosing polynomial coefficients so that the ratio of polynomials have a magnitude of 1 at f = f
s
, so that | G (f

s
) 

| = S
d
 at the frequency f

s
 (in this case specified only in Blockette [58]); the S

d
 specified in Blockette [58] is then the stage 

gain at that frequency.

If Blockette [54] is omitted, SEED will assume the ratio of polynomials equals 1.

SEED allows these combinations of blockettes for a stage of this type: [54], [58] or [58] by itself.

Analog-Digital Converter
This stage is the transition between the analog stage (for which the input units are ground behavior and the output some 
other analog signal, usually volts), and the purely digital stages. This stage has no frequency response (except for a possible 
delay between the sample-and-hold time and the time-tagging), but it does have a gain (in digital counts per analog unit 
in).  Use Blockettes [54], [57], and [58] to specify the nature of this stage.  In Blockette [54], fields 5 and 6 of Blockette 
[54] give the units involved; fields 7 and 10 of Blockette [54] should both be set to zero.  In Blockette [57], field 4 gives 
the sample rate, with field 5 set to 1 to indicate that this is also the output sample rate.  Fields 7 and 8 of Blockette [57] 
describe any empirically determined delays and applied time shifts respectively.  (Use the delay field, field 7 of Blockette 
[57], only in this case.)  In Blockette [58], field 4 gives the digitizer response (in counts/analog unit); and field 8 may be any 
frequency.

Note that it is acceptable (but discouraged) to combine the digitizer description with the first FIR stage.  In this case,  the 
input units would be volts and the output units would be counts.
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Digital Stages
These stages operate on sampled data, and thus operate in discrete time rather than continuous time.  All operations 
are digital, done to finite precision; however, SEED does not describe the level of precision actually used, and, for most 
purposes, all arithmetic is assumed to be done to infinite precision.  In general, a digital stage will consist of:

1.	 A discrete-time filter, either FIR (finite impulse response, also called convolution filter), or IIR (infinite impulse 
response, also called recursive filter).

2.	 Resampling of the filter output to a new rate.  Usually this rate is lower, in which case this operation is called deci-
mation.

3.	 Time-shifting of the decimated series by assigning a time-tag to each value that corresponds not to the time at 
which it was computed, but to some other time.  The difference between these times is the time-shift, which is 
usually non-positive (where the assigned time is earlier than the actual time) to minimize the phase shift introduced 
by the digital filter.

	 Coefficient Representation for Digital Stages

This type of stage is usually used to specify Finite Impulse Response (FIR) filters.  In this type (- ∞ ≤ k ≤ ∞) is 
convolved with the L+1 weights or coefficients b

0
, b

1
,…,b

L
 to produce the output series y

k:

 L (8)
y

k
 = ∑ b

n
 x

k - n

 n = 0

Filters of this type are specified by Blockettes [54], [57], and [58] (or, in a special case, by using only Blockette [58]).  
Blockette [54] contains the weights b

n
 as the numerator coefficients. (There are no denominator coefficients in this 

case.)  Blockette [57] specifies the input sample rate and the decimation factor.  (Use a decimation factor of 1 if the 
output rate equals the input rate). Blockette [58] specifies a scaling factor, S

d
.  The transfer function for this filter is:

     L (9)
G (f) = S

d 
∑ b

n
 z-n = S

d
H

c
(z)

     n = 0

where the z-transform variable is z = e2 π i f Δt, with Δt = the input sample interval specified in Blockette [57], and f is the 
frequency in Hz.

Scale the coefficients  b
n
 so that | Hc (zs) | = 1.0 where z

s
 = e2 π i fs Δt, f

s
 is specified in Blockette [58]. The S

d
 specified in 

Blockette [58] is then the stage gain at f
s
.

If Blockette [53] is omitted, SEED will assume that the polynomial is 1.0; this would be appropriate for a pure multi-
plication.

	 Pole - Zero Representation for Digital Stages

This type of stage is usually used to specify Infinite Impulse Response (IIR) filters (those with feedback). In this type 
of digital filter, the input series x

k
 (- ∞ ≤ k ≤ ∞) is convolved with the LB + 1 weights b

0
, b

1
, …, b

LB
; and past values of 

the output series y
k
 are convolved with the LA weights a

1
, a

2
, …, a

LA
, to produce the output value y

k
:

LB   LA (10)

y
k
 = ∑ b

n
 x

k – n - ∑ a
n
 y

k – n

 n = 0  n = 1

The transfer function of this filter is:

B(z) b
0
 +b

1
z-1+…+b

LB
 z-LB (11)

H(z) =
______
___

=
_________________________________

A(z) 1+a
1
z-1+…+a

LA
 z-LA
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where the z-transform variable is z = e2 π i f Δt, with ∆t = the input sample interval specified in Blockette [57].

Specify filters of this type with Blockettes [53], [57], and [58]. (Blockette [54] could be used to provide the coefficients, but 
because of the loss of precision possible in this case, we recommend not using it.) Blockette [53] will specify LB zeros, r

1
, 

r
2
, …, r

LB
; LA poles p

1
, p

2
,…, p

LA
 , and a normalization factor A

0
. The transfer function for the stage is:

  LB (12)
∑ (z – r

n
)

 n = 1
G (z) = S

d
 A

0
_____________________ = S

d
 A

0
 H

p
 (z)

    LA
∑ (z – p

m
)

  m = 1

where z is as defined above. Choose A
0
 so that A

0
 • | H

p
(z

n
) | = 1.0, where z

n
 =. e2 π i fn Δt. Here f

n
 is the f

n
 from Blockette [53], 

and should be equal to the f
s
 in Blockette [58]. The S

d
, specified in Blockette [58], is then the stage gain at that frequency, 

with . G (f
n
). = . G (f

s
).= S

d
.

The zeros rn are the solutions of the equation:

b
0
 +b

1
 z-1 +...+b

LB
 z-LB = 0 (13)

while the poles pm are the solutions of:

1 + a
1
z -1 …+ a

LA
 z-LA = 0 (14)

If Blockette [53] is omitted, A
0
 will be considered to equal 1.0 (this would be appropriate for a pure multiplication).

	 Decimation

Blockette [57] specifies this operation.  If the input series is y
m
, the output series is w

n
, with: 

w
n
 = y

Ln + l
 , n = 0, 1, 2, ... (15)

where L is the decimation factor and l is the offset (both are integers). The output sample interval is L times the input 
sample interval.

	 Time-shifting

As the data stream w
n
 emerges from the decimator, at time t

T
 each term is tagged (at least implicitly) with a nominal time 

t
N
. Blockette [57] gives the time shift δ = t

N
 - t

T
 implied by this, in seconds. The effect of this time shift is to introduce a 

phase shift of ei 2 p f δ.

Examples
In the following three examples, we will assume we have a seismometer (Stage 1) followed by a digitizer (stage 2) followed 
by an FIR filter (Stage 3). We will then show an example Stage 0 specification summarizing these 3 stages.

Example of Specifying an Analog Stage 1.

Suppose we have a seismometer with a natural frequency f
o
 of 1 Hz ± 1%, a damping factor λ = 0.7 ± 3%, and a sensitivity 

of 150 volts per meter per second per second at 1 Hz.  The acceleration transfer function would be (ignoring any constant 
gains):
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            s (16)
H (s) = ________________________

s2 + 2 λ ω
0
 s + ω

0
2

There is one zero of H (s) at s = 0.The two poles of H (s) are at:

s = λ ω
0
 ± i ω

0
 √1-λ2 (17)

In our example, ω
0 = 

2π • (1) rad/sec, λ = 0.7, so we have the poles:

p
1
 = - 4.3982 + i 4.4871 (18)

p
2
 = - 4.3982 - i 4.4871

and the zero:

r
1
 = 0 +i 0 (19)

Note that both the real and imaginary parts of p
1
 and p

2
 may be in error by 4%, because f

0
 was ±1% and λ was ±3%. 

However, it is known that both parts of r
1
 are exactly 0. These errors are specified in Blockette [53], along with the real 

and imaginary parts of the poles and zeros. For this example, Blockette [53] would be filled out as follows:

Note Field name Type Length Mask or Flags

1 Blockette type — 053 D 3 053
2 Length of blockette (length in bytes)
3 Transfer function type A 1 A
4 Stage sequence number D 2 01
5 Stage signal input units D 3 [M/S ** 2]*

*NOTE: What goes here is not “M/S **2”, but rather a 3 
digit unit look-up code such as “004” that refers to the 
corresponding (field #3) code in Blockette [34], the Units 
Abbreviations Blockette where “M/S**2” is defined.

6 Stage signal output units D 3 [V]*
*NOTE: see note above

7 AO normalization factor (1.0 if none) F 12 +0.87964E+01
NOTE: See EXAMPLE OF CALCULATING 
AN ANALOG STAGE RESPONSE for in-
formation on how to calculate AO.

8 Normalization frequency fn(Hz) F 12 +0.10000E+01
9 Number of complex zeros D 3 001
10 Real zero F 12 +0.00000E+00 } From (19) 11 Imaginary zero F 12 +0.00000E+00
12 Real zero error F 12 +0.00000E+00 } Because 

both parts 
of r1 are 
exactly zero

13 Imaginary zero error F 12 +0.00000E+00

14 Number of complex poles D 3 002
15 Real pole #1 F 12 -0.43982E+01 } P1 from (18)16 Imaginary pole #1 F 12 +0.44871E+01
17 Real pole error #1 F 12 +0.17593E+00 ( = 4% 

of 0.43982E+01)
18 Imaginary pole error #1 F 12 +0.17948E+00 ( = 4% 

of 0.44871E+01)
15 Real pole #2 F 12 -0.43982E+01

} P2 from (18)16 Imaginary pole #2 F 12 +0.44871E+01
17 Real pole error #2 F 12 +0.17593E+00 ( = 4% 

of 0.43982E+01)
18 Imaginary pole error #2 F 12 +0.17948E+00 ( = 4% 

of 0.44871E+01)
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Note that the errors listed are positive, but represent a plus/minus (±) error expressed in the same units (either rad/sec 
or Hz) as the units of the real and imaginary parts of the pole listed in fields 15 and 16. Blockette [58] would be filled as 
follows:

Note Field name Type Length Mask or Flags

1 Blockette type — 058 D 3 058
2 Length of blockette D 4 (length in bytes)
3 Stage sequence number D 2 01
4 Sensitivity/gain (Sd) F 12 +0.15000E+03
5 Frequency (Hz) (fs) F 12 0.10000E+01

NOTE: fs = fn of Blockette [53].
6 Number of history values D 2 00

This blockette stops here because there are no history values.

Example of Specifying a Digital Stage 2

ANALOG DIGITAL CONVERTER:
Suppose the analog-to-digital converter (ADC) we are using is a 24-bit ADC for which full scale is ±20v = ±223 counts. 
We use Blockettes [54], [57], and [58] to describe this stage. We assume the ADC is producing 40 samples per second. 
Blockette [54] would be filled out as follows:

Note Field name Type Length Mask or Flags

1 Blockette type — 054 D 3 054
2 Length of blockette D 4 (length in bytes)
3 Response type A 1 D
4 Stage sequence number D 2 02
5 Signal input units D 3 [V] (by reference)
6 Signal output units D 3 [counts] (by reference)
7 Number of numerators D 4 0000

REPEAT fields 8 — 9 for the Number of numerators:
8 Not Present
9 Not Present
10 Number of denominators D 4 0000
11 Not Present
12 Not Present

Blockette [57] (We need this one to specify the sample rate.)

Note Fieldname Type Length Mask or Flags

1 Blockette type D 3 057
2 Length of blockette D 4 (Length in bytes.]
3 Stage sequence number D 2 02
4 Input sample rate(Hz) F 10 0.4000E+02
5 Decimation factor D 5 00001
6 Decimation offset D 5 00000
7 Estimated delay (seconds) F 11 +0.0000E+00
8 Correction applied (seconds) F 11 +0.0000E+00

Blockette [58]:
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Note Field name Type Length Mask or Flags

1 Blockette type — 058 D 3 058
2 Length of blockette D 4 (length in bytes)
3 Stage sequence number D 2 02
4 Sensitivity/gain (Sd) F 12 +4.19430E+05*

*NOTE: This number equals 223 counts 
divided by 20 volts, in this case.

5 Frequency (Hz) (fs) F 12 +0.10000E+01*
*NOTE: We have specified the sensitiv-
ity at fs = 1 Hz, the same frequency at which 
we specified the seismometer sensitivity and 
the same frequency at which we calculated 
the normalization constant AO in stage 1.

6 Number of history values D 2 00
We end the blockette here if there are no history values.

Example of Specifying a Digital Stage 3

FIR FILTER:

Suppose the ADC in stage 2 is followed by a simple running 2-point averager, and we throw away every other sample 
(decimate by 2) at the output of this stage 3. A simple 2- point average is an example of a FIR filter, with both coef-
ficients equal to 0.5. Suppose further that we want the gain of this FIR filter to be 2 at 0 Hz. One way to accomplish this 
in a real implementation is to let both of the coefficients be equal to 1.0 instead of 0.5. (This results in a gain of 2.00 at 
0 Hz, or a gain of 1.9938 at 1 Hz. See “EXAMPLE OF CALCULATING A DIGITAL STAGE RESPONSE” below for 
an example of calculating this gain.)

In the form of equation (8), this FIR filter may be written as

y
0
 = b

0
 x

0
 + b

1
 x

-1
 = b

0
 x

0
, (assume x

-1
 = 0) (20)

y
1
 = b

0
 x

1
 + b

1
 x

0
,

  :        :           :

where b
0
 = 1.0 and b

2
 = 1.0. The decimation process would keep y

0
, throw away y

1
, keep y

2
, and so on. The delay of this 

filter would appear to be about one-half of the original sample interval of 0.025 seconds, or 0.0125 seconds (the mid-
way point of a plot of the symmetrical coefficients).

We would specify this stage 3 FIR filter by using Blockettes [54], [57], and [58]. Since Blockette [58] needs to specify 
the gain separately, assuming that the coefficients listed in Blockette [54] have been normalized to produce a gain of 
1.00 at f

s
 = 1 Hz, we list b

0
 = b

1
 = 0.50155=1/1.9938.

Blockette [54]

Note Field name Type Length Mask or Flags

1 Blockette type — 054 D 3 054
2 Length of blockette D 4 [Length in bytes.]
3 Response type A 1 D
4 Stage sequence number D 2 03
5 Signal input units D 3 [counts] (by reference)
6 Signal output units D 3 [counts] (by reference)
7 Number of numerators D 4 0002
8 Numerator coefficient #1 F 12 +0.50155E+00(b0)
9 Numerator error #1 F 12 +0.00000*

*(error in b0 -- assume zero for accurately stored digital values.)
8 Numerator coefficient #2 F 12 +0.50155E+00 (b1)
9 Numerator error #2 F 12 +0.00000  (error in b1)
10 Number of denominators D 4 0000*

*NOTE: Even though we list zero denominator coef-
ficients for FIR filters, we assume that there is a 
non-zero denominator value of 1.0, to avoid division 
by zero, when evaluating the filter transfer function.
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Blockette [57]

Note Field name Type Length Mask or Flags

1 Blockette type — 057 D 3 057
2 Length of blockette D 4 [Length in bytes.]
3 Stage sequence number D 2 03
4 Input sample rate (Hz) F 10 0.4000E+02
5 Decimation factor D 5 00002 (we are throwing 

away every other sample)
6 Decimation offset D 5 00000 ( we are keeping 

the first sample)
7 Estimated delay (seconds) F 11 +0.1250E-01
8 Correction applied (seconds) F 11 -0.1250E-01*

*NOTE: We are assuming here that the data acquisition 
system is time tagging the data at the output of this FIR 
filter in such a way as to correct for the estimated delay.

Blockette [58]

Note Field name Type Length Mask or Flags

1 Blockette type — 058 D 3 058
2 Length of blockette D 4 [Length in bytes.]
3 Stage sequence number D 2 03
4 Sensitivity/gain (Sd) F 12 +0.19938E+014
5 Frequency (Hz) (fs) F 12 +0.10000E+01*

*NOTE: We are again quoting the gain at the same 
frequency as in previous stages. We could also have 
quoted the gain as 2.00 at 0 Hz, because it is within 1% 
of the gain at 1 Hz. (The gain is easy to calculate at 0 
Hz because it is just the sum of the coefficients bi.)

6 Number of history values D 2 00

Example Stage O Specification

Blockette [58] must be used to summarize the overall (stages 1 through 3 in this case) gain, or system sensitivity, at a 
given frequency.  It is best to specify this sensitivity at the same frequencies f

s
 and f

n
 used in the previous stages.  Then the 

stage 0 sensitivity should be equal to the product of the stage 1 through K sensitivities, if there are K stages in total.

For our 3-stage example, Blockette [58] for stage 0 should be filled in as follows:

Note Field name Type Length Mask or Flags

1 Blockette type — 058 D 3 058
2 Length of blockette D 4 [Length in bytes.]
3 Stage sequence number D 2 00
4 Sensitivity/gain (Sd) F 12 +1.25439E+084

*Note: This sensitivity is assumed to be expressed 
in counts per m/s * * 2; that is, in terms of output 
units for stage K per input units for stage 1 
at fs = 1 Hz.  In this case, it is equal to

5 Frequency (Hz) (fs) F 12 +0.10000E+01 (21)
6 Number of history values D 2 00
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	 Example of Calculating Analog Stage 1 Gain and Phase

For our 1 Hz seismometer in the stage 1 example given, we have, using the form in equation (6):

s + 0
H

p
(s) = ______________________________________________________________ (22)

(s + 4.3982 i 4.4871) (s + 4.3982 – i 4.4871)
A

0
 =  0.87964E+03  @  f

n
 = 1 Hz (23)

S
d
 = 0.15000E+03  @  f

s
 = 1 Hz                                                 (24)

How did we find A
0
?  To evaluate H

p
 (s) at f

n
 = 1 Hz, we substitute for s the value  s = iω

n
 = i 2 π f

n
, and then calculate 

the modulus of H
p
 (i 2 π f

n
):

| 0 + i 2 π · fn | (25)

| H
p
 (i 2 π · f

n
) | = _________________________________________________________________

[4.3982 + i (2 π f
n
 + 4.4871)] [4.3982 + i (2 π f

n
 

–4.4871)] = 0.11368
f

n
 = 1

Then

1
A

0
 = __________ = 8.79640 (26)

0.11368

Of course, equation (25) may be used to evaluate H
p
(s) at any frequency other than f

n
. The phase of H

p
 (s) at f may be 

obtained by:

( N   Im (s - r
n
) ) (  M    Im (s – p

m
) ) (27)

Ø (f) = tan-1 ∏  ------------ - tan -1 ∏  ----------------
n=0  Re (s – r

n
) m=0   Re (s – p

m
)

s = i π f

Where “Im” denotes the imaginary part of the argument and “Re” denotes the real part.

The symbol  means everything to the left of the symbol is evaluated at the equation that follows it.

Example of Calculating Digital (FIR Filter) Stage Gain and Phase

For the FIR filter in the stage 3 example above, we have b
1
 = b

0
 = 0.50155 and S

d
 = 1.9938 at f

s
 = 1 Hz. Using the form of 

equation (9), the transfer function of this filter is

 L
G (f) =  S

d ∑ b
n
 z-n = S

d
 H

c
 (z) = 1.9938 (0.50155 z0 + 0.50155 z-1) (28)

n=0

So

H
c
 (z) = 0.50155 + 0.50155 (z-1) (29)

In order to evaluate H
c
 (z), we substitute z = e 2 π i f ∆t, where f is the frequency at which we wish to evaluate H

c
 (z) and 

∆t is the sample interval, defined as the inverse of the sample rate listed in Blockette [57] for the stage. Using f = 1 Hz 
and ∆t =1/40 sec = 0.025 secs, we have

H
c
 (e2 π i (1) (.025) ) = 0.50155 (1 + e –2 π i (1) (.025) ) (30)


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Using the indentity

eiO = cos O + i sin O (31)

Equation (30) can be written

Hc= 0.50155 {1 + cos [-2 π (1) (.025)] + i sin [-2 π (1) (.025)]} (32)

So the real part of H
c 
at f = 1 is

Re(H
c
)= 0.50155 {1 + cos (-.05 π) } = 0.996925 (33)

Ant the imaginary part of H
c
 at f = 1 is

Im(H
c
)= 0.50155 { sin (-.05π } = 0.07846 (34)

The magnitude of H
c
 at f = 1 is then

| H
c
 |

f=1
= {[Re(H

c
)]

f=1
2 +[Im (H

c
)]

 f=1
2}1/2 = {(.996925)2 + (0.07846)2}1/2 =1.00000 (35)

So we see that the coefficients b
0
 = b

1
 = 0.50155 chosen in the example really did normalize the magnitude of H

c
 (z) to a 

value of 1.0 at f = 1 Hz.

How did we know to choose the coefficients to be b
0
 = b

1
 = 0.50155? If we express H

c
 (z) in equation (29) in its more 

general form we have:

H
c
 (z) = b

0
 + b

1
 z-1 (36)

Equation (30) then becomes:

H
c
 (e i 2 π f ∆ t )= b

0
 + b

1
 -i 2 π f ∆ t (37)

and (32) becomes

H
c


 f=1 
= b

0
 + b

1 
cos [ -2 π f ∆ t] + sin [ -2 π f ∆ t]} 

f=1
(38)

If we then substitute in the actual FIR filter coefficient values of b
0
= b

1
 = 1 from our example, we find that actual magnitude 

of H
c
 at f = 1 is

Actual | H
c
 |

f=1
= 1.9938 (39)

To normalize the coefficients b
i
 so that the resulting H

c
 has a value of 1.0 at f = f

s
 = 1 then, we must divide all of the bi by 

this actual magnitude value in equation (39).  These new values of bi are then used in Blockette [54]:

Actual b
0

New b
0
 = _______________ = 0.50155

1.9938
(40)

Actual b
1

New b1 = _______________ = 0.50155
1.9938

Note that this step of normalization before entry of the coefficients into the SEED blockettes is equivalent to  the introduc-
tion of the A

O
 normalization constant for analog stages (A

O
 is the inverse of  | H

p
 (i 2 π f

n
) | ).

f = 1

f = 1

f = 1
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 If we write equation (37) for L + 1 terms we have

H
c
 (e i 2 π f ∆ t )= b

0
 + b

1
 e -i 2 π f ∆ t + b

2
 e -i 2 π f ∆ t + … + b

L
 e -i 2 π L f ∆ t (41)

If we now let f = 0 in equation (41), we see that the magnitude of H
c
 is just the sum of the coefficients:

H
c
 (e0 )= b

0
 + b

1
 + … b

L
(42)
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