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Last Time

* Linear systems
— Basic models
— Convolution and deconvolution modeling
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This Time

* Linear systems

— Finite length signals
— Correlation
» Discrete time series & transforms

Reading: Stein and Wysession Chap. 6.3-6.4
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Figure 6.2-3: Amplitude spectra for the body and surface wave segments
from a large earthquake.
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Finite length signals

+ Consider a window function b(¢). Its effect on
the data f{¢) is represented by multiplying f{¢) by
b().

G(@) = [b(t) (D) dt

)= f [ fB(w ””’de ZL}F(W”)e'W’?dw”} e dt

}F(w")[zl}e"'"““"’““””'dt}dm "dw'
-0 '7-[ —00

17 ’

=$:£B(w’) LF(w")é(w —w'—w")dw"]dw'
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Finite length signals

* Using the sifting properties, we obtain

'

6@)= - [8@)| [F@" (@ o' ~0")o" i
1 = , - R |
=E:£B(w VF(w -w')dw =EB(W)*F(W)

* Hence, the effect of multiplying a time series by a
window function is that the spectrum of the time
series is convolved with the spectrum of the
window function.

* This is what is expected!
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Figure 6.3.9: Effects of windowing time signals on the amplitude spectra.
Data length and frequency resolutior

f(?) is a sine wave.
What’s the effect?

Effects of a boxcar window function

b(t)=1 for -T<t<T,
=0, otherwise.

TR Taking a finite length of record
“smears” the delta functions of
the infinite length record’s
spectrum into boader peaks with
side lobes.

t “l 1 Input signals contains

different frequencies

[y v remman | i
[ U v f The frequency resolution, the
LI minimum separation in frequency
|
t 1

Its Fourier transform is:

% - 2sinwT 2T sinwT
B(w)=fe””’dt=f T sinwl _ 2T sinw

=

iw w wTl
Figure 6.3-8: A boxcar function in the time and frequency domains.

Time senes: b(t) Amplitude spectrum: Blw)

for which two peaks can be
resolved, is proportional to the
reciprocal of the total length.

Time (8)

Frequency (@) K eismolgy Il 8

“Uncertainty principle” in time and ¢ J Tapered boxcar functions
frequency domains 4 ‘,{ﬁ W(t)%[ucos”(%‘m], for-T<t<-T+T,
. . W. Heisenberg 1 ~T+T,
* The product of the “widths” in the two =5[l+coswfl+)},foﬁ -Ti<t<T
domains is constant. Figur 6310 ENects o tapering a boxcar funtion on the amplitude spacirum.

The side lobes for
the tapered window
are reduced, but the

* For a time domain record with duration T,
the resolution in the frequency domain is o
proportional to 1/T.

. . . 3251 ' o central peak is less
* Perfect resolution in frequency requires B it sharp.
infinite record length in time. Similarly, band-pass
. . . . Tapered - 4
* Infinite bandwidth in frequency is needed to ol I | | filters are often
represent a time function exactly. . A tapered in the
™ g frequency domain.
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Auto-correlation

* A special case of the cross-correlation is the auto-

Cross-correlation

correlation.
e B
C(L)=lim — [x(2)f (1 + L)ds R(L)=lim— [f(1)f(t+L)dt
=T 5, I==T
-T/2
* C(L), the cross-correlation of x(¢) and f{¢), * The auto-correlation is maximum at zero lag, and

measures the similarity between f{¢) and the is an even function of the lag.
later portions ofx(t) by Shiftil’lg f(l) by f;g:;f;i;"‘;:’"; St comation ) at zero lag and is an even

different lag times, L, and evaluating the
integral of the product as a function of L.

» We often set 7 to an appropriate value, due
to finite length of the data.
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Auto-correlation and amplitude spectrum
T/2

.1
R(L)=lim— [1(0)f ¢+ Lydr

-T/2

* Can be expanded using the inverse Fourier transform

. 12 p iw(t+L)
R(L)=}1E;ﬁ:!:2f(t) :[;F(w)e dw |dt

3 1 p iwl ne iwt
_;T}obTT_fF(w)e [_J;{(t)e dt |dw

I ;
=lim—— (F(@)F(-w)e™dw
lim > o= [F@F (o)
. 1 - 2 ol
_}_lir}cﬁ:[c‘}?(w)‘ e'"dw
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Auto-correlation and amplitude spectrum

+ If we define the power spectrum, a normalized version of
the amplitude spectrum

o1 2
P(w) = lim ?‘F(w)‘
¢ Then the auto-correlation is the inverse Fourier transform
of the power spectrum:

eidew

R(L) = i ﬂP(w)

¢ As aresult, the auto-correlation of a function contains
information only about its amplitude spectrum, but not
about its phase.
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Figure 6.3-13: A function has the same auto-correlation if it is reversed in time.

f(2) = R(L)

f(t)

’\ — R(L)
L

oo > ar T
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Cross-correlation and convolution

y(L) = [x(@)f(L-t)dt = x(£)* f(2)

—00

(L) = ;igolc%_!f(t)f(t +L)dt = x(1) * g(?)

The cross-correlation is similar in nature to the
convolution of two functions. Whereas
convolution involves reversing a signal, then
shifting it and multiplying by another signal,
correlation only involves shifting it and

multiplying (no reversing).
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Figure 6.3-11: Using cross-correlation to find a differential SS-S travel time.

Application of the cross-
correlation to determine the
travel time difference between
the direct S and reflected SS
phases.
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Figure 3.3-30: Auto-correlation of a Vibroseis sweep signal.

Sweep signal Klauder wavelet

|

b ot Lag time
0

If wi(r) is a long signal, use cross-correlation.

The cross-correlation quantifies similarities between two time series /(7) and g(7):

T
1
e(l)= rlL"L'f j_/'(l + L)g(t)dt
-7

Figure 3.3-30: Auto-correlation of a Vibroseis sweep signal.

Sweep signal Klauder wavelet

|

b ot Lag time
0

If wi(r) is a long signal, use cross-correlation.

Figure 3.3-28: as the of a source pulse
with a reflector series.
Geological Reflector Input  _  Seismic
section series pulse trace
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The cross-correlation quantifies similarities between two time series /(7) and g(7): L
= .
P | " |—
e(l)= rllm T S+ L)g(t)dt
o -7 Convolution of w(r) and r(¢):
For example, the cross-correlation of w(¢) with itself (called auto-correlation) is: T
- s()y=w()*r(t)= j w(t = o)r(r)dr
— ; 5 s ; g
a(L)= lm T j St + L)f(t)dr (which is always maximum at zero lag)
e ' - S(@) = W(@)R(o)
ismolgy 11 22
Flgure.3.3:31: Analysis of a.Vibroseis record. a August 29, 2005 - 17:00-17.30 I Search for low-frequency
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tremors by a waveform match-
filter technique
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Early aftershocks of the 2004 Parkfield

Seconds since the Parkfield mainshock We found 11 times more
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Sampling Of continuous data into discrete time series Flgur: 6.4-2: Effect of sampling a time signal on the frequency amplitude
spectrum.
Figure 6.4-1: Use of a Dirac comb in sampling a time signal.
Aliasing in the frequency domain
g @
= t Spectrum of unsampled
n data (band limited) with
4 signal at || < /At
N T | I T
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Figure 6.4-3: of in a time signal at less than two s o s s
s g WGt Due to the periodicity of the discrete Fourier transform, the
second half of the values of the frequency amplitude spectrum,
at angular frequency greater than the Nyquist angular
- frequency (N/2)Aw, represents the negative frequencies.
Figure 6.4-4: Relation between frequency amplitude spectrum and discrete
Fourier transform (DFT).
General rule: AT
1. At least two samples per wavelength are needed to reconstruct a
sinusoid signals accurately.
2. For a sampling interval of Az, the highest resolvable frequency is
Jfv=1/(2Af), known as the Nyquist frequency. ; -
3. Any frequencies higher than the Nyquist frequency are aliased -_—
into lower ones, when the data are sampled. This cannot be
‘unaliased’.
4. Generally, seismic data are filtered with an analog anti-aliasing
filter to remove frequencies above the Nyquist frequency before .
sampling to produce the digital seismogram.
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What we have learned today

* Linear systems

— Finite length signals

Next class

» Seismometers and seismic network

— Correlation
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