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Figure 6.2-3: Amplitude s, body and surface wave segments  Figure 3.3-29: Seismic section before and after deconvolution.
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Last Time

» Course Introduction
— Class logistics, requirements and policies
— Class schedule

* Introduction to digital signal processing and its
relation to seismological research

» Fourier Series/Fourier Transform

Reading: Stein and Wysession Chap. 6.1 — 6.2
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Today’s Outline

¢ Fourier transforms

* Linear systems

Reading: Stein and Wysession Chap. 6.2-6.3
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What 1s a Delta Function?

* The Dirac delta function, or 6 function, is
(informally) a generalized function depending on
a real parameter such that it is zero for all values
of the parameter except when the parameter is
zero, and its integral over the parameter from —oo
to oo is equal to one. (From wipipedia)
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Delta function

Two definitions of a deita function at ¢ = £,.

Three ways to define it
1 “1t-1,\"] ¢
8(t-1,) =lim exp| L=k |
(t=t) =0 g4/ 27T xp[ 2 ( o ) g
oo l r—l2n| t T r.lzn‘
S (o) = [1 (@)t~ 1)dt Gl e we e

Step function H(t - t,)

O(t—t))=dH(t-1t,)/dt
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Fourier transform of the delta
function

» To find the Fourier transform of the delta
function, we use the definition of the
transform with f(¢)=0(¢-¢,)

F(w)= fe'imé (t-t,)dt=e"™

« The amplitude spectrum is |F(w) = ("¢ )" =1

* The phase spectrum is ¢(@) =wt,
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Figure 6.2-6: Amplitude and ph pectra of the Fourier transform of a

delta function.

1 Amplitude Phase

* If the delta function is at time zero,
F@)= fe‘“f”é (Hdt =1
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Fourier transform of the delta
function

The delta function’s amplitude spectrum has
unit amplitude at all frequencies.

The output from a linear time-invariant
system with delta function input is called
impulse response (in time domain), and
transfer function (in frequency domain).

The inverse transform of the delta function
1 p —iwt, iwt
f(t)_ﬂie e"dw =8(t-1t,)
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Figure 6.2-7: Fourier transform of a delta function as the sum of sinusoids

of all frequencies.
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Delta function in the frequency
domain

A delta function at angular frequency w, has
an inverse transform

1 p iwt _L
f(t)=gi£6(w—wo)e dw_Zn

iw ot
e

So we can express the delta function in
terms of its Fourier transform

1= ) 1=
d(w -w,)=— [™'e ™ dt =— (™™ dt
( ) 2 :{; 2 ;[0
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Delta function in the frequency

domain

* Delta function in angular frequency give the
spectra of sinusoids with a single frequency.

» For example, a cosine with frequency @,
f(t)=cosmt =("" +e"")/2
* Has a Fourier transform
_ l p iw ot —iwyt\ —iwt _ l p i(wy-w )t —i(w+w )t
F(W)_Z:[Q(e +e e dt—2:£(e +e )t

F@)=n[6(w-w,)+0(@ +w,)]
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Ax,(t) —>

Linear Systems

A “system” is a general representation of
any device or processes that takes an input
signal and modifies it.

A ” is is defined by the

following diagram, and is previously
referred as the principle of

Figure 6.3-1: Definition of a linear sy
Linear — Ay,(1)
system — 80 Ay;(t) + By,(t)

Bx,(t) —»
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Linear Systems

* The earth generally behaves as a “
” when transmitting seismic waves.

* Hence, models are used in a
wide variety of seismological applications.

* Fourier analysis is a natural tool for studying

because Fourier transform

has the same linear properties.

 Can you think of any cases when the Earth
is behaving as a * 77
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Impulse Response of a Linear
System

Figure 3.3-29: Seismic section before and after deconvolution.

Impulse Linear system:

f(t) Impulse response;
5(t) response £(t)

F(w) Transfer function

N

Arbitrary Linear system:

s » V() =x(t) = f(t),
x(t) response f(t)

Y(w) = X(w)F (@)

Harmonic Linear system:

> [Onte
gioot response f(t) Flay)
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Linear Systems
* The output spectrum of an arbitrary input signal

Y(@)=X@)F(w)

* The output in the time domain y(f) can be found
| ;
y(t) = —fX(w)F(w)e"mdw
2w I,

* For the impulse x(1) =5(¢) , X(w)=1, y(#) = f(?)
* For a harmonic input signal x(¢) = ™
* The transform is the delta function in frequency
domain X (w)=27d(w -w,) . The output is
Y(w)= 2i f2m$ (@ -@,)F(w)e™dw = F(w,)e™
vs -0
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Relation between the input/output
and the impulse response

y(t)= i fw X (w)F(@)e™ dw
0= f [ fx(r)e-"mdrH x(r')e-fm'dr'}ef%
f’: el Rl —-00
y(t) = }}X(T)f(r’) Zirie—im(t—r'—r)dw deT’

—00—00

(6) = [x(@)

}f(r')é(t -7’ —r)dr'}dt

y(t) = }x(r) f(t-71)dr y(t)=x(1)* f(¢)
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Figure 6.3-3: Bandpass filter in the fr y and time d

Bandpass filter transfer function
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Convolution and deconvolution
modeling in seismology

ideas are pervasive in
seismology.

« If a signal x(¢) goes through two
in succession with impulse response
f(?) and g(¢), the output is either a convolution
in the time domain, or the product of the
transfer functions in the frequency domain.

Figure 6.3-4: Two linear systems in succession.

f(t) £(t) = x(t); 9(t) f(t) = x(t) * g(t)
X0 —>| ) > FoX@) — | Gl Fo)X(@)G(@)
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Convolution and deconvolution
modeling in seismology

u(t) = x(t)*g(t)=i(t)

Figure 6.3-5: Seismogram as the convolution of the source, structure, and
instrument signals.

Source Structure Instrument Seismogram
x(t) g(t) i(t) u(t)
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Figure 6.3-6: Transfer functions for various seismometers.
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Response of a system in space by
convolutions

U.S. Geological Survey

A Lo Figure 1.2.5: Predicted strong ground motion in eastern and western U.S.
National Seismic Hazards Map
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The Green’s function

The displacement at a point x and time ¢ is

u(x,t) =ffG(x -xt=t)f(x',t)dt'dV'

Where  G(x-x";t—1t") isthe Green’s
function, the impulse response to a source at
position x” and time #’, and f'(x',¢") is the
distribution of the seismic sources.

In a general medium

u(x,t) =ffG(x,t;x',t')f(x',t')dt’dV'
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Inverse filter

* We assume that a seismogram s(¢) results from
convolution of a source pulse w(¢), and an
earth structure operator 7(z).

s(t) =w(t)*r(1) S@)=W(@)Rw@)
* We can create an inverse filter
w () = w(t) = 8(¢)
* The Fourier transform of the inverse filter is

just 1/W(w), so the deconvolution can be done
by dividing the Fourier transforms

S(@)/W(w)=R(@)
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Water-level deconvolution
* For S(w)/W(w)=R(@)
* What happens if W(w) is very small?

Amplitude Specteum with Amplitude Specterum

After water-level
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water-lovel highlighted
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y

Frequency Frequency

http://eqseis.geosc.psu.edu/~cammon/HTML/RftnDocs/seq01.html
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Example of deconvolution

Figure 6.3-7: Diagram of the receiver function approach.
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Example of deconvolution
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What we have learned today

* Linear systems
— Basic models
— Convolution and deconvolution modeling

Next time

* Finite length signals
e Correlation
» Discreet time series and transforms

Reading: Stein and Wysession Chap. 6.4

1/24/11 zpeng Seismolgy |1 27 1/24/11 zpeng Seismolgy |1 28
Finite length signals Finite length signals
+ Consider a window function b(¢). Its effect on + Using the sifting properties, we obtain
the data f{¢) is represented by multiplying f{¢) by 1= =
b(t). ) G(w)=%:£B(w) J;F(w ¥(w-w' -w")do'|do
Gw) = [b(t)f (e ™ dt _ L B P oo - - B«
_fx o LB(w V(@ ~w'Mw' = B(@)*F(@)
G(w) = }[;}B(w')e“ﬂdw'”;}jv(w ”)e"'”"‘dw"]e"mdt * Hence, the effect of multiplying a time series by a
LT e T window function is that the spectrum of the time
_ 1 }B @) }F @") 1 }eﬂ-mm'm@ P se.rles 18 convglved with the spectrum of the
2m Y, . 2r Y, window function.
=L}B(wf) }F(w")é(w —w'—w")dw”]dw’ » This is what is expected!
2m J J
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Effects of a boxcar window function

b(t)=1 for -T<t<T,
=0, otherwise.

Its Fourier transform is:

—iwt

e r _2sinwl 2T sinwT

B(w)= fe’i”'dt =—|
7 —-iw @ ol
Figure 6.3-8: A boxcar function in the time and frequency domains.
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f(?) is a sine wave.
What’s the effect?

Taking a finite length of record
“smears” the delta functions of
the infinite length record’s
spectrum into boader peaks with
side lobes.

Input signals contains
different frequencies

The frequency resolution, the
minimum separation in frequency
for which two peaks can be
resolved, is proportional to the
reciprocal of the total length.
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“Uncertainty principle” in time and

oy

P

frequency domains d

W. Heisenberg

* The product of the “widths” in the two
domains is constant.

* For a time domain record with duration T,
the resolution in the frequency domain is
proportional to 1/T.

* Perfect resolution in frequency requires
infinite record length in time.

* Infinite bandwidth in frequency is needed to
represent a time function exactly.
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Tapered boxcar functions

W(t)=%[l+(:osn:(t+fr_T‘)],for—7’<t<—7’+T1
1

—l[1+0057ﬂ(t_T+T‘)

Figure 6.3-10: Effects of tapering a boxcar function on the amplitude spectrum.
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The side lobes for
the tapered window
are reduced, but the
central peak is less
sharp.

Similarly, band-pass
filters are often

tapered in the

frequency domain.
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