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Abstract Earthquake occurrence is well-known to be

associated with structural changes in underground

dynamics, such as stress level and strength of electro-

magnetic signals. While the causation between earthquake

occurrence and underground dynamics remains elusive, the

modeling of changes in underground dynamics can provide

insights on earthquake occurrence. However, underground

dynamics are usually difficult to measure accurately or

even unobservable. In order to model and examine the

effect of the changes in unobservable underground

dynamics on earthquake occurrence, we propose a novel

model for earthquake prediction by introducing a latent

Markov process to describe the underground dynamics. In

particular, the model is capable of predicting the change-

in-state of the hidden Markov chain, and thus can predict

the time and magnitude of future earthquake occurrences

simultaneously. Simulation studies and applications on a

real earthquake dataset indicate that the proposed model

successfully predicts future earthquake occurrences. The-

oretical results, including the stationarity and ergodicity of

the proposed model, as well as consistency and asymptotic

normality of model parameter estimation, are provided.

Keywords Change-point � ETAS model � EM algorithm �
Structural break

1 Introduction

Earthquakes constitute a natural disaster that threatens the

lives of millions of people worldwide. It is crucial to

analyze earthquake data in order to help elucidate earth-

quake mechanisms and protect lives through a reliable

earthquake early warning system (Cameletti et al. 2016;

Finazzi and Fassò 2016).

In seismology, earthquake data are commonly recorded

in the form of an earthquake catalogue, which includes the

exact date and time of the occurrence, as well as the lati-

tude, longitude, depth, and magnitude of earthquakes in a

particular region. A typical earthquake catalogue is shown

in Fig. 1. In particular, earthquakes are only detectable by

seismometer stations if their magnitudes are larger than a

certain threshold, referred to as a magnitude of complete-

ness. This threshold mainly depends on the accuracy and

working mechanism of the seismometers, as well as the

geology around the stations.

One important feature typically observed in an earth-

quake catalogue is that the earthquakes are clustered, as

shown in Fig. 2. Sometimes, there is a sequence of frequent

arrivals of earthquakes; whereas, at other times, it under-

goes a period of fewer arrivals, called seismic quiescence.

Although earthquake clustering is typically difficult to

classify, it is possibly explained by structural changes in

some underground dynamics. Reid (1910) proposed the

elastic-rebound theory in an attempt to elucidate
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earthquake mechanisms. In particular, stress builds up

slowly in underground faults due to tectonic plate move-

ment. Earthquakes occur when the accumulated stress

exceeds a certain threshold, and the energy is then released.

Therefore, the threshold divides the underlying stress level

into two states that correspond to high or low frequency of

earthquakes, respectively. However, while earthquakes are

observable, the underground stress level is difficult to

measure. Hence, to model the earthquake mechanism, the

stress level should be modeled as a hidden process that

switches between the two states. As the Markov chain is

commonly used to model state transitions, the hidden

Markov model (HMM) is a natural candidate for modeling

earthquake data.

The HMM involves a stochastic process

fðYn; SnÞ; n 2 N ¼ f1; 2; 3; . . .gg, where fYng represents

an observed process and fSng is a hidden process that

governs the distribution of fYng. In particular, fSng is a

Markov chain with state space S and transition probability

matrix P. For s; s0 2 S, the ðs; s0Þ entry of P, denoted by

Pðs; s0Þ, is the probability of going from state s to s0. Note
that

P
s02S Pðs; s0Þ ¼ 1. Given the hidden Markov chain

fSng, fYng is a sequence of conditional independent ran-

dom variables with probability density f ðYnjSnÞ, which is

known as state-dependent distribution. In the literature,

different forms of state dependent distribution f ðYnjSnÞ
have been considered. For example, Ebel et al. (2007)

modeled the inter-arrival time between two earthquakes

Fig. 1 An example of an

earthquake catalogue

Fig. 2 Earthquakes with magnitudes > Mmin ¼ 2 in 2009 Southern California, where Mmin is the magnitude of completeness of the catalogue

1416 Stoch Environ Res Risk Assess (2018) 32:1415–1434

123



(Yn) by an exponential distribution; Orfanogiannaki et al.

(2010) employed a Poisson model for earthquake arrival

frequency ðYnÞ. These HMMs are mainly designed for

explaining earthquake clustering, and information about

earthquake magnitude is not taken into account. Moreover,

in these models, no structure on the hidden Markov process

is assumed, i.e., the transition probability matrix P of the

hidden Markov process fSng is constant. As a result, they

lack the power to predict the future hidden states, and thus

the frequency and magnitude, of future earthquakes.

In this paper, we develop a novel HMM for earthquake

modeling and forecasting. We use earthquake amplitude as

the observation process, and thus the arrival time and mag-

nitudes of earthquakes can bemodeled simultaneously.More

importantly, we propose a dynamic structure for the hidden

Markov process. Specifically, the transition probabilities are

modeled by possibly time-varying covariates and past

observations. This enables prediction of future hidden states,

and thus future earthquakes’ frequency and magnitude.

The paper is organized as follows. Section 2 introduces

the model and derives the likelihood function. Section 3

discusses computational issues involved in the maximum

likelihood estimation. Section 4 introduces an algorithm

for predicting future earthquake occurrences. Section 5

reports the results of simulation experiments. Section 6

presents an application to Southern California earthquake

occurrences. The proof of strict stationarity, ergodicity of

the model, and the consistency and asymptotic normality of

the maximum likelihood estimation are given in the online

Supplementary Material.

2 Model description

In an earthquake catalogue, we observe the magnitude

fAng where n ¼ 1; 2; . . .; is the time index. Earthquake

occurrence is defined as an earthquake with An greater than

the magnitude of completeness Mmin. In other words, An

equals zero when no earthquake occurs, or a value greater

than Mmin when an earthquake occurs. As the occurrence of

an event is naturally modeled by a Bernoulli random

variable, An can be modeled by the product of a left-trun-

cated exponential random variable and a Bernoulli random

random variable as

An ¼ MnIn; ð1Þ

where

Mn �Left� truncated expðkn;MminÞ; In �BernoulliðpnÞ;
ð2Þ

(Ogata 1988, 1998). The rate of the exponential distribu-

tion kn controls the magnitude, and the probability of

earthquake occurrence pn controls the frequency of earth-

quake occurrence.

Suggested by the elastic-rebound theory of Reid (1910)

that the unobservable stress level can be divided into two

states that correspond to high and low level of earthquake

frequency, we introduce a hidden state process fSng that

governs pn and kn. At time n, Sn equals 0 or 1 when the

stress level is in the state of low or high level of earthquake

frequency respectively. Moreover, the parameters kn and

pn are modeled by

kn ¼
k0; Sn ¼ 0;

k1; Sn ¼ 1;

�

pn ¼
p0; Sn ¼ 0;

p1; Sn ¼ 1:

�

Given the current state Sn, the conditional distribution of An

is called the state dependent distribution, and can be

derived from (1) and (2) as

fAnjSnðanjsnÞ ¼
psnksne

�ksn ðan�MminÞ; Mmin � an\1;
1� psn ; an ¼ 0:

�

ð3Þ

Although we restrict Sn to be of two states, it can be

easily extended to a general S-state model with S� 2. Next,

since the frequency and magnitude of earthquake occur-

rence are highly dependent on the hidden state Sn, in order

to predict future earthquakes, it is important to model the

dynamic of the hidden state Sn. However, in the literature,

HMMs for earthquake data usually assumes that the tran-

sition probabilities between hidden states are constant

throughout the whole series (Ebel et al. 2007;

Orfanogiannaki et al. 2010). Therefore, they are not cap-

able of predicting future hidden states. To overcome this

problem, we propose a dynamic model that incorporates

covariates and allows us to predict the future dynamic of

Sn, which in turn enables us to predict changes in the fre-

quency and magnitude of earthquake occurrence.

To model the dynamic of fSng, we model the transition

probability PðSn ¼ snjSn�1;Zn�1Þ by a logistic function,

PðSn ¼ 1jSn�1 ¼ 0; zn�1Þ ¼ p01n ¼
exp z0n�1a
� �

1þ exp z0n�1a
� � ;

p00n ¼ 1� p01n ;

ð4Þ

and

PðSn ¼ 0jSn�1 ¼ 1; zn�1Þ ¼ p10n ¼
exp z0n�1b
� �

1þ exp z0n�1b
� � ;

p11n ¼ 1� p10n ;

ð5Þ

where a, b 2 Rd are parameters; and zn�1 2 Rd is a d di-

mensional time-varying covariate. Here, the logistic func-

tion is used as a convenience choice to transform covariates
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into probabilities between zero and one; other functions,

such as the probit link, can be used (Hughes et al. 1999).

The transition probabilities can be summarized by the

matrix

Pn ¼
p00n p01n

p10n p11n

� �

: ð6Þ

Figure 3 depicts a typical relationship between fAng and
fSng. Note that earthquakes occur more frequently in State

1 than in State 0. This is in line with the clustering feature

observed empirically in earthquake catalogues.

Remark 1 There are two reasons for adopting a discrete

time framework instead of using a continuous-time HMM.

First, in practice, earthquake catalogues and covaraites are

recorded in discrete time. Even continuous time models

have to be discretized in order to incorporate the discrete

time covariates. Moreover, as the proposed discrete time

model takes observations in a 1 min fine grid, it should

give sufficiently accurate approximation to the continuous

time process of earthquake occurrence.

Second, and more importantly, the estimation theory of

discrete-time HMM is well developed and is easy to

implement. It can be readily extended to the case that the

dynamics of the hidden state depends on time-varying

covariates. However, the continuous-time analog, i.e., the

continuous-time HMM with non-homogeneous transition

probability depending on time-varying covariates, is more

difficult to make statistical inference. For example, when

the transition probability Pt depends on the time-varying

covariates, the infinitesimal generator Q ¼ limt!0
Pt�I
t

its

corresponding forward and backward probabilities are

more complicated for establishing computational feasible

estimation algorithms and studying other probabilistic

behaviors of the model.

2.1 The choice of covariates

One of the main features of the proposed model is the

incorporation of the covariates Zn in the dynamic of the

hidden state Sn [(4) and (5)], which facilitates the predic-

tion of future hidden states. In practice, the covariates may

be chosen according to some phenomena in seismology

that provide information about the state of the underground

underlying dynamics. For example, it is observed that the

aftershocks initiated from an earthquake decrease with the

passing of time (Utsu 1961; Ogata 1988). This phe-

nomenon suggests that the time that has passed since the

previous earthquake, denoted by Tn for time n, provides

important information for the clustering pattern of

upcoming observations (Sornette and Knopoff 1997). Thus,

we choose Tn as a covariate for state transition.

Several potential precursors for earthquakes, including

electromagnetic signals, electrical resistivity changes,

magnetization changes, local stress interactions, or other

Fig. 3 Plot of simulated earthquake observations (crosses) with two hidden states (horizontal lines) and transitions (vertical lines) in between.

ðk0; k1; p0; p1; a0; a1;b0; b1Þ ¼ ð5; 2; 0:01; 0:1;�6;�0:05;�4;�0:15Þ
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underground measurements have been proposed in litera-

tures (e.g., Park et al. 1993; Seeber and Armbruster 2000).

However, it is found that many actual observations of low-

frequency electrical precursors deviate from the expected

laboratory results. In some cases, precursors are recorded

without corresponding the co-seismic signals or involve

missing data. Moreover, the electrical signals are also

susceptible to background noise (Huang and Ikeya 1998).

As a result, these potential precursors cannot be readily

included as covariates on earthquake prediction. For sim-

plicity, we include Tn as the only time-varying covariate Zn
in the real data analysis.

Specifically, Tn is an observable discrete stochastic

process with infinite state space T ¼ Zþ ¼ f0; 1; 2; . . .g. If
an earthquake occurred at time point n, i.e., when An 6¼ 0,

then we have Tn ¼ 0. The value of Tn accumulates if no

earthquake occurs at time point n, i.e.,

TnjTn�1 ¼
Tn�1 þ 1; An ¼ 0;

0; An 6¼ 0:

�

Note that Tn has an advantage of fully determined by An

and Tn�1, hence does not involve prediction errors due to

the modelling of covariates. Moreover, Tn introduces a

self-exciting feature, in the sense that one earthquake can

affect the dynamics of subsequent hidden states. The cor-

responding transition probabilities of the hidden states are

particular cases of (4) and (5) with zn ¼ tn, where tn is the

observed value of Tn at time n. In summary, the earthquake

prediction model for the earthquake catalogue fAng is

given as

An ¼ MnIn; ð7Þ

where Mn �Left-truncated expðkSn ;MminÞ,
In �BernoulliðpSnÞ,

TnjTn�1 ¼
Tn�1 þ 1; An ¼ 0;

0; An 6¼ 0:

�

PðSn ¼ 1jSn�1 ¼ 0; Tn�1 ¼ tn�1Þ

¼ p01n ¼
expða0 þ a1tn�1Þ

1þ expða0 þ a1tn�1Þ
;

PðSn ¼ 0jSn�1 ¼ 1; Tn�1 ¼ tn�1Þ ¼ p10n

¼ expðb0 þ b1tn�1Þ
1þ expðb0 þ b1tn�1Þ

;

p00n ¼ 1� p01n ; and p11n ¼ 1� p10n :

The parameters of interest are collected as

h ¼ fk0; k1; p0; p1; a0; a1;b0; b1g 2
H ¼ Rþ � Rþ � ð0; 1Þ � ð0; 1Þ � R� R� R� R:

ð8Þ

Since the covariate Tn depends on the fAk; k� ng, the
state transition dynamic depends on the past observations.

Thus, Model (7) cannot be covered by traditional HMM,

where the state transition dynamic does not depend on past

observations. Therefore, the probabilistic properties, such

as stationarity and ergodicity, and asymptotic theories of

inference in traditional HMMs cannot be directly applied to

Model (7). In the Supplementary Material, we provide the

proof of the following theorem.

Theorem 1 The process Xn ¼ ðSn;An; TnÞ0
� �

n2Z follow-

ing Model (7) is strictly stationary and ergodic.

For a general model that incorporates an additional d-

dimensional time-varying covariates fZn 2 Rdgn2Z, Model

(7) can be extended as

An ¼ MnIn; ð9Þ

where Mn �Left-truncated expðkSn ;MminÞ, In �Bernoulli

ðpSnÞ,

TnjTn�1 ¼
Tn�1 þ 1; An ¼ 0;

0; An 6¼ 0:

�

As, denoting PðSn ¼ 1jðs; t; zÞÞ as PðSn ¼ 1jSn�1 ¼ s;

Tn�1 ¼ t; Zn�1 ¼ zÞ, the transition probabilities of the hid-

den states are

PðSn ¼ 1jð0; tn�1; zn�1ÞÞ ¼ p01n

¼ expða0 þ a1tn�1 þ z0n�1aÞ
1þ expða0 þ a1tn�1 þ z0n�1aÞ

;

PðSn ¼ 0jð1; tn�1; zn�1ÞÞ ¼ p10n

¼ expðb0 þ b1tn�1 þ z0n�1bÞ
1þ expðb0 þ b1tn�1 þ z0n�1bÞ

;

p00n ¼ 1� p01n ; and p11n ¼ 1� p10n :

The parameters of interest are collected as h ¼ fk0; k1; p0;
p1; a0; a1; a; b0; b1; bg 2 H ¼ Rþ � Rþ � ð0; 1Þ � ð0; 1Þ�
R� R� Rd � R� R� Rd: The following corollary

extends Theorem 1 for Model (9).

Corollary 1 Let fZn 2 Rdgn2Z be a d-dimensional time-

varying covariate which is a bounded, strictly stationary

and ergodic Markov Chain process. Assume that ZnjZn�1

and AnjSn are independent for all n 2 N. Then the process

fXn ¼ ðSn;An; Tn; ZnÞ0gn2Z following Model (9) is strictly

stationary and ergodic.

2.2 Likelihood

In this section, we derive the likelihood function for

parameter estimation. Define aN1 ¼ ða1; a2; . . .; aNÞ and

sN1 ¼ ðs1; s2; . . .; sNÞ as the observations and states from

time 1 to N. Since we have no observations to determine Tn
and Sn for n� 0, we set T0 ¼ 0 and introduce an initial

distribution for S1 by

Stoch Environ Res Risk Assess (2018) 32:1415–1434 1419
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PðS1 ¼ s1Þ ¼ ds1 ; ð10Þ

where s1 2 S ¼ f0; 1g and d0 þ d1 ¼ 1. The use of the

initial distribution can be justified by the stationarity of

fðSn;An; TnÞ0g in Theorem 1. The likelihood function of the

observations aN1 is

Lðh; aN1 Þ ¼ P AN
1 ¼ aN1

� �

¼
X

sN
1
2SN

P AN
1 ¼ aN1 ; S

N
1 ¼ sN1

� �

¼
X

sN
1
2SN

PðS1 ¼ s1Þ
YN

k¼2

PðSk ¼ skjsk�1; tk�1Þ
"

YN

k¼1

PðAk ¼ akjskÞ
#

¼
X

sN
1
2SN

ds1
YN

k¼2

psk�1skk

YN

k¼1

fAk jSkðakjskÞ;

ð11Þ

where sk�1; sk 2 S ¼ f0; 1g, ds1 , psk�1skk , and fAk jSkðakjskÞ
are defined in (10), (7), and (3), respectively. For sim-

plicity, psk�1skk is written as psk�1sk . Note that for any

sequence of observations, the maximizer ðd0; d1Þ of the

likelihood will either be (1, 0) or (0, 1) (Levinson et al.

1983; Leroux and Puterman 1992; Zucchini et al. 2008).

From (11), the computation of likelihood function

requires summing over all possible combinations of the

hidden states sN1 , which is a sum of 2N terms, where each

term is a product of 2N factors. This operation requires a

computational order of OðN2NÞ, and thus direct numerical

maximization is infeasible when N is large. To simplify the

computations, we can express the likelihood function as

L h;aN1
� �

¼dFða1js1ÞP2Fða2js2ÞP3Fða3js3Þ���PNFðaNjsNÞ10;
ð12Þ

where 10 ¼ ð1;1Þ0, d¼ðd0;d1Þ is the initial state distribu-

tion, Pn is the transition probability matrix defined in (6),

and

FðanjsnÞ ¼
fAnjSnðanj0Þ 0

0 fAnjSnðanj1Þ

 !

;

(Zucchini and MacDonald 2009). Since (12) involves a

product of 2N two-dimensional matrices Pk and FðakjskÞ,
the number of operations required for computing Lðh; aN1 Þ
is of order O(N), which is much smaller than the order

OðN2NÞ using (11).

We have the following results regarding the maximum

likelihood estimate (MLE) of Model (7) and Model (9), for

which the proof is provided in the Supplementary Material.

Theorem 2 The MLE ĥ for the parameter h ¼
fki;pi; a0; a1; b0; b1; i 2 S ¼ f0; 1gg 2 H of the process

fðSn;An; TnÞ0gn2N following Model (7) is strongly consis-

tent in the quotient topology, i.e., its Euclidean distance to

the equivalent class convergence to 0, that is,

lim
N!1

d ĥ; fh 2 H : h� hHg
	 


¼ 0; PhH�a:s:

where hH is the true parameter vector and the parameters

h1,h2 2 H are equivalent, denote as h1 � h2, if P
h1 ¼ Ph2

almost surely. Furthermore, the MLE ĥ for the parameter h

is asymptotically normally distributed.

Corollary 2 Let ĥ be the MLE for the parameter h ¼
fki;pi; a0; a1; a; b0; b1; b; i 2 S ¼ f0; 1gg 2 H of the pro-

cess fðSn;An; Tn; ZnÞ0gn2N following Model (9). If the

assumptions in Corollary1 is satisfied, then ĥ is strongly

consistent in the quotient topology. Furthermore, the MLE

ĥ for the parameter h is asymptotically normally

distributed.

3 Implementation

3.1 EM algorithm

Given the observations fa1; . . .; aNg from an earthquake

catalogue, the parameters h of the Model (7) can be found

by maximizing the likelihood (12). While direct maxi-

mization by standard numerical methods, such as the

Broyden–Fletcher–Goldfarb–Shanno algorithm, is simple

and fast, it could also be unstable. On the other hand, the

expectation–maximization (EM) algorithm generally gives

more stable performance even under poor initial values of

the parameters (Bulla and Berzel 2008).

The EM algorithm is a popular method for computing

MLE for problems involving missing data. Since the values

of the hidden state in Model (7) are unobservable, they can

be treated as missing data, and the EM algorithm is

applicable (Baum et al. 1970; Baum 1972; Welch 2003).

However, the Baum–Welch algorithm assumes that the

transition probabilities in the hidden Markov chain are

constant. As the likelihood function (11) involves a

dynamic model for the hidden state process, the standard

Baum-Welch algorithm can be modified to handle time-

varying transition probabilities. The details of the EM

algorithm and the derivation of the forward and backward

probabilities used in the algorithm are illustrated in the

Supplementary Material. Other possible estimation proce-

dures using EM algorithm can be find in the literature, see

Bartolucci and Farcomeni (2009, 2015) and Bartolucci

et al. (2013).
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Once the MLE ĥ is obtained, we can estimate the vari-

ance–covariance matrix of the MLE by inverting the

observed information matrix, see Sect. 3.6 of Zucchini and

MacDonald (2009). The observed information matrix can

be computed by numerically approximating the Hessian of

negative log-likelihood function evaluated at the estimated

parameters, see Sect. 3.6.1 of Zucchini and MacDonald

(2009). See also Bartolucci and Farcomeni (2015a) for

alternative methods for computing the standard errors of

the parameters estimates of the hidden Markov model.

With the variance–covariance matrix and the asymptoti-

cally normality of the MLE proven in Sect. 3 of the Sup-

plementary Material, we can construct confidence intervals

for the parameters.

3.2 Further computational issues

In maximizing the likelihood (12), an issue in implemen-

tation is that some estimating parameters are in bounded

domains. In particular, in (3) the probability of earthquake

occurrence satisfies psn 2 ð0; 1Þ and the rate of exponential

distribution satisfies ksn [ 0. To avoid constrained maxi-

mization, these parameters can be reparameterized to have

unbounded domains prior to maximization. Specifically,

we set ~psn ¼ 1
1þepsn

and ~ksn ¼ expðksnÞ, so that the repa-

rameterized parameters ~psn and ~ksn are constraint-free.

Once the maximizers are obtained, they are transformed

back to yield the maximizers in terms of the original

parameters psn and ksn . The asymptotic variance–covari-

ance matrix of the original parameters can also be trans-

formed from the observed information matrix of the

reparameterized parameters in the numerical maximization

to enhance numerical stability, see Sect. 3.6 of Zucchini

and MacDonald (2009).

Due to the complicated structure of the HMM, the

likelihood is not a convex function of the parameters.

Hence, both direct maximization and the EM algorithm

may converge to a local maximum of the likelihood

function. While both methods cannot guarantee conver-

gence to the global maximum, the EM algorithm is less

sensitive to poor initial values, and thus less likely to be

trapped in the local maximum. Nevertheless, multiple

random starting points can be specified to increase the

probability of obtaining the global maximizer.

Finally, an issue exists regarding the identifiability of

the parameters. In particular, the parameters of Model (7)

are not identifiable in the sense that the indices of the states

can be permuted without affecting the distribution of the

observation process fAng. This issue is called the label-

switching problem (Leroux 1992). For example, the

parameter vectors fk0; k1; p0; p1; a0; a1; b0; b1g and

fk1; k0; p1; p0; b0; b1; a0; a1g, which correspond to

permuting the indices of state 0 and state 1, give exactly the

same value of likelihood. Therefore, we define State 0 as

the state with a smaller probability of earthquake occur-

rence p. Similarly, we set State 1 as the state with a larger

probability of earthquake occurrence.

4 Prediction

4.1 Estimation of hidden states

In this section we develop prediction procedures for the

hidden states and future earthquake occurrences. First, to

estimate the hidden states, the local decoding and the

Viterbi algorithm are commonly employed (Viterbi 1967;

Zucchini and MacDonald 2009). Local decoding estimates

the hidden state at a particular time point k 2 ½1;N� by the

most probable state in terms of the posterior probability of

states Sk given the observations aN1 , i.e.,

ŝk ¼ argmax
i¼0;1

P Sk ¼ ijaN1 ; ĥ
	 


: ð13Þ

To estimate the whole hidden state process SN1 , the local

decoding can be performed for each of n ¼ f1; � � � ;Ng.
Note that, in the implementation of local decoding, the

posterior probability of states PðSk ¼ skjaN1 ; ĥÞ can be

computed efficiently by the forward and backward proba-

bilities, see (32), (33), (34), and (36) in Sect. 4.1 of the

Supplementary Material.

In contrast, the Viterbi algorithm works globally, in the

sense that it estimates the entire hidden state process SN1
simultaneously. Specifically, the estimated sequence of

hidden states ŝN1 is obtained by

ŝN1 ¼ argmax
sN
1
2f0;1gN

P
SN1 ¼ sN1 jaN1 ; ĥ
	 


;

(Viterbi 1967). Equivalently, ŝN1 is the sequence that

maximizes the complete data log-likelihood Jðh; aN1 ; sN1 Þ,
i.e.,

log Jðh; aN1 ; sN1 Þ ¼ logP AN
1 ¼ aN1 ; S

N
1 ¼ sN1

� �

¼ log ds1
YN

k¼2

psk�1sk

YN

k¼1

fAk jSkðakjskÞ
" #

¼ log ds1 þ
XN

k¼2

log psk�1sk

þ
XN

k¼1

log fAk jSkðakjskÞ:

ð14Þ

with respect to the hidden states.
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The Viterbi algorithm for computing ŝN1 is described as

follows. Define

V1i ¼ PðS1 ¼ i;A1 ¼ a1Þ ¼ difA1jS1ða1js1Þ;

and

Vni ¼ max
sn�1
1

2Sn�1
P Sn�1

1 ¼ sn�1
1 ; Sn ¼ i;An

1 ¼ an1
� �

; ð15Þ

for n ¼ 2; 3; . . .;N. For i; j ¼ 0; 1, Vnj satisfies the recursive

relation

Vnj ¼ max
sn�1
1

2Sn�1
P An ¼ anjSn ¼ j; sn�1

1 ; an�1
1

� �

P Sn ¼ jjsn�1
1 ; an�1

1

� �
P Sn�1

1 ¼ sn�1
1 ;An�1

1 ¼ an�1
1

� �

¼ max
sn�1
1

2Sn�1
P An ¼ anjSn ¼ jð ÞP Sn ¼ jjsn�1; tn�1ð Þ

P Sn�1
1 ¼ sn�1

1 ;An�1
1 ¼ an�1

1

� �

¼ max
sn�2
1

2Sn�2
max
i2S

P An ¼ anjSn ¼ jð Þ

P Sn ¼ jjSn�1 ¼ i; tn�1ð Þ
P Sn�2

1 ¼ sn�2
1 ; Sn�1 ¼ i;An�1

1 ¼ an�1
1

� �

¼ max
sn�2
1

2Sn�2
max
i2S

fAnjSnðanjjÞpijn

P Sn�2
1 ¼ sn�2

1 ; Sn�1 ¼ i;An�1
1 ¼ an�1

1

� �

¼ max
i2S

Vn�1ipijn
� �

� �

fAnjSnðanjjÞ:

ð16Þ

Using this recursive relationship, the value of Vnj from

n ¼ 1 to N can be computed efficiently. Using (16), the

sequence ŝN ; ŝN�1; . . .; ŝ1 can be computed recursively

based on

Step 1 Compute V1i; . . .;VNi, i=0, 1, using (16).

Step 2 ŝN ¼ argmax
i¼0;1

VNi .

Step 3 For n ¼ N � 1;N � 2; . . .; 1, ŝn ¼ argmax
i¼0;1

ðVnipiŝnþ1n
Þ .

A simulation study is performed to compare the local

decoding and the Viterbi algorithm. We generated a sample

of size N ¼ 10; 000 by model (7) with the set of parameters

fk0; k1; p0; p1; a0; a1; b0; b1g ¼ f5; 2; 0:01; 0:1;�6;�0:05;

�4;�0:15g: Figure 4 depicts the true states and the esti-

mated states from local decoding and the Viterbi algorithm.

Note that usually more change-points in the estimated

hidden state occur by local decoding. One possible reason

for this is that local decoding maximizes the posterior

distribution of hidden states separately at each time point,

and the information from the preceding and succeeding

hidden states are not taken into account. Hence, the Viterbi

algorithm appears to be a more reliable method.

4.2 Prediction of future earthquake occurrence

Based on the estimated model parameters and hidden state,

we propose the following simulation-based procedure to

predict future hidden state, occurrences, and magnitudes of

future earthquakes.

Step 1 Apply local decoding or the Viterbi algorithm to

find the estimated state ŝN in time N.

Step 2 Observe the time that has passed since the last

earthquake to obtain tN .

Step 3 Based on the MLE ĥ and the estimated state ŝN ,

simulate M sample paths of hidden states SNþm
Nþ1 ðjÞ and

observed earthquake magnitude ANþm
Nþ1 ðjÞ, where m is a

large integer and j ¼ 1; . . .;M.

Step 4 For each path of hidden state SNþm
Nþ1 ðjÞ, identify the

time of the k-th change-in-state, denote as tkðjÞ, where

k 2 Z. The 95% prediction interval for the time to the k-th

change-in-state is the interval between the 2.5-th and 97.5-

th percentiles of ftkðjÞgj¼1;...;M .

Step 5 For each path of observations ANþm
Nþ1 ðjÞ, identify

the time and magnitude of the k-th earthquake, denote as
~tkðjÞ and mkðjÞ, where k 2 Z. The 95% prediction interval

for the time to the k-th earthquake is the interval between

the 2.5-th and 97.5-th percentiles of f~tkðjÞgj¼1;...;M . Simi-

larly, the 95% prediction interval for the magnitude of the

k-th earthquake is the interval between the 2.5-th and 97.5-

th percentiles of fmkðjÞgj¼1;...;M .

Note that it suffices to choose m to be large enough such

that each of the M paths contains not less than k changes in

states and k earthquakes. Alternatively, one may simulate

each of the paths separately until k changes in states and

k earthquakes have occurred.

5 Simulation studies

In the simulation study, to mimic the scenario of real

earthquake, the data is generated from a h similar to the

parameter estimates of the dataset in Sect. 6. Specifically,

k0
k1

� �

¼
5

2

� �

;
p0
p1

� �

¼
0:01

0:1

� �

;
a0
a1

� �

¼
�6

�0:05

� �

;
b0
b1

� �

¼
�4

�0:15

� �

;

with Mmin ¼ 2. As there is no information before time

n ¼ 1, set t0 ¼ 0. In addition, the time difference between

consecutive observations is chosen to be 1 minute. As an

earthquake catalogue typically includes records across

several decades, the sample size N is huge. For example, in

the real dataset in Sect. 6, the sample size is around

N ¼ 14; 000; 000. To reflect the situation, we explore the
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scenarios N ¼ 100; 000, 1, 000, 000 and 5, 000, 000. Both

the EM algorithm and the direct numerical maximization

are employed for parameter estimations. The mean, stan-

dard errors, median and root mean square errors of the

parameter estimates for 200 replications are reported in

Table 1. On the other hand, we include another two

parameter sets with sample size N ¼ 100; 000 to simulate

the parameter estimation of Model (9). Another time-

varying covariate Xn is added on top of Tn to mimic the

local stress interactions (Seeber and Armbruster 2000). In

particular,

XnjXn�1 ¼
Xn�1 þ 1; � 150 6 Xn�1\150;

�150; Xn�1 ¼ 150:

�

The results are summarized in Table 2. Note that both

methods estimate the true parameters accurately. Never-

theless, the parameter estimates by EM algorithm have

slightly lower standard errors than that by the direct

numerical maximization. One possible reason for this is

that direct numerical maximization is more susceptible to

local maxima.

We next study the finite sample performance of hidden

state estimations. Using the MLE obtained from the EM

algorithm, a sequence of hidden states is estimated by local

decoding and the Viterbi algorithm under the case

N ¼ 5; 000; 000. For illustration, a subsample of size N ¼
200; 000 is depicted in Fig. 5. Note that the Viterbi algo-

rithm recovers most of the change-points, and more false-

positive change-points of states are found by local decod-

ing. This agrees with the comparison of the two methods in

Sect. 4.

Finally, we study the prediction of future changes in

states and earthquakes occurrences. Based on one partic-

ular path under the case N ¼ 5; 000; 000, we simulate M ¼
1000 future paths of length m ¼ 36; 792; 000 to construct

95% prediction intervals for each of the 50 future changes

in states, 20 future earthquakes with magnitudes > 5, and

10 future earthquakes with magnitudes > 6, respectively.

The length m ¼ 36; 792; 000 corresponds to the number of

observations in 70 years, which is large enough to cover

the desired number of future earthquakes over each mag-

nitudes. The results of prediction are presented in Figs. 6, 7

and 8. Note that the prediction intervals cover well the

future true change-points in hidden states, time and mag-

nitude of future earthquakes, with only one earthquake of

magnitudes > 6 missed. Thus, the prediction algorithm

provides satisfactory prediction of the future changes in

states, occurrence time, and magnitudes of large

earthquakes.

Fig. 4 Estimation of change-points by different algorithms. True change-points (top); change-points estimated by Viterbi algorithm (middle);

change-points estimated by local decoding (bottom)
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6 Application to earthquake occurrence

In this section, we apply the proposed Model (7) to an

earthquake catalogue in Southern California. Southern

California is well-known to be an active tectonic region

due to the San Andreas Fault beneath. Earthquake cata-

logues from 1981 to 2015 are obtained from the Southern

California Earthquake Center (http://service.scedc.caltech.

edu/ftp/catalogs/). The average magnitude of completeness

is found to be approximately 1.8 by Hutton et al. (2010).

The data from 1981 to 2007, which involve more than

90, 000 earthquakes, are used for model fitting and pre-

diction. The data from 2008 and 2015, which involve 22

earthquakes of magnitude > 5 and an earthquake of mag-

nitude > 7, are used as a testing dataset to study the pre-

diction accuracy.

In seismology, the Gutenberg–Richter law asserts that if

the magnitude m and the total number of earthquakes

having magnitudes greater than m (denoted by Nm) have a

log-linear relationship, then the earthquake magnitudes are

exponentially distributed (Cosentino et al. 1977). In par-

ticular, if for some constants a and b,

log10 Nm ¼ a� bm;

then the probability of an earthquake with magnitude

M larger or equal to m is

PðM > mÞ ¼ e�ðb ln 10Þm:

For the earthquake catalogue of Southern California, a plot

of logNm against m is provided in Fig. 9. This justifies the

use of exponential distribution in Model (7) for modeling

the earthquake magnitudes.

Using the proposed estimation and prediction proce-

dures, we fit the Model (7) to the data, obtaining parameter

estimates and prediction intervals for future changes in

hidden states, time, and magnitude of future earthquakes.

Table 1 Mean, standard errors

(in brackets), median (in italics),

and root mean squared error (in

underline) of parameter

estimates based on 200

replications

N EM algorithm Direct maximization

100,000 1,000,000 5,000,000 100,000 1,000,000 5,000,000

k̂0 5:0091
ð0:1634Þ
5:0044
0:1632

5:0051
ð0:0524Þ
5:0098
0:0525

4:9993
ð0:0226Þ
5:0001
0:0226

5:0166
ð0:1744Þ
5:0304
0:1748

4:9937
ð0:0564Þ
4:9928
0:0566

4:9994
ð0:0227Þ
5:0004
0:0227

k̂1 2:0047
ð0:0855Þ
2:0081
0:0855

1:9972
ð0:0295Þ
2:0005
0:0295

2:0001
ð0:0129Þ
2:0015
0:0129

1:9951
ð0:0947Þ
2:0026
0:0946

2:0006
ð0:0259Þ
2:0026
0:0259

2:0002
ð0:0129Þ
2:0011
0:0129

p̂0 0:0100
ð0:0003Þ
0:0100
0:0003

0:0100
ð0:0001Þ
0:0100
0:0001

0:0100
ð0:00005Þ
0:0100
0:00005

0:0100
ð0:0003Þ
0:0100
0:00003

0:0100
ð0:0001Þ
0:0100
0:0001

0:0100
ð0:00005Þ
0:0100
0:00005

p̂1 0:0990
ð0:0055Þ
0:0988
0:0056

0:0999
ð0:0018Þ
0:0998
0:0018

0:0999
ð0:0007Þ
0:1000
0:0007

0:0986
ð0:0053Þ
0:0989
0:0055

0:0998
ð0:0024Þ
0:1001
0:0024

0:0999
ð0:0012Þ
0:1000
0:0012

â0 �5:9520
ð0:5021Þ
�5:9998
0:5031

�5:9817
ð0:1299Þ
�5:9923
0:1308

�5:9936
ð0:0548Þ
�5:9954
0:0550

�5:9770
ð0:4783Þ
�5:9873
0:4776

�6:0007
ð0:1353Þ
�5:9933
0:1349

�5:9977
ð0:0608Þ
�6:0000
0:0607

â1 �0:0644
ð0:0536Þ
�0:0487
0:0554

�0:0512
ð0:0075Þ
�0:0508
0:0076

�0:0504
ð0:0030Þ
�0:0503
0:0031

�0:0559
ð0:0408Þ
�0:0495
0:0412

�0:0496
ð0:0074Þ
�0:0490
0:0074

�0:0501
ð0:0033Þ
�0:0497
0:0033

b̂0 �3:9469
ð0:6955Þ
�3:9651
0:6958

�3:9729
ð0:2503Þ
�3:9710
0:2512

�3:9967
ð0:0568Þ
�3:9923
0:0568

�4:0171
ð0:8047Þ
�4:0332
0:8028

�3:9673
ð0:4518Þ
�3:9690
0:4519

�3:9801
ð0:2544Þ
�3:9846
0:2546

b̂1 �0:3247
ð0:5142Þ
�0:1558
0:5418

�0:1703
ð0:1118Þ
�0:1533
0:1134

�0:1510
ð0:0116Þ
�0:1521
0:0116

�0:4380
ð1:1023Þ
�0:1318
1:1367

�0:2054
ð0:1818Þ
�0:1495
0:1896

�0:1675
ð0:0781Þ
�0:1560
0:0798
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In particular, we set Mmin ¼ 2, the time between each time

point equals 1 min, and t0 ¼ 0. The results are summarized

in the following section.

6.1 Results

We applied the EM algorithm and direct numerical maxi-

mization to obtain the MLE of the model parameters.

Different initial values have been used so that the resulting

MLE is likely to achieve the global maximum. The stan-

dard errors of the MLE are estimated by inverting the

observed information matrix, as discussed in Sect. 3. The

results are summarized in Table 3.

Compared with direct numerical maximization, the EM

algorithm gives a larger value of likelihood function and

smaller values of standard errors of parameter estimates.

Thus, the parameter estimates found by the EM algorithm

are used for the prediction of hidden states and future

earthquakes. The interpretation of the fitted model is as

follows. With ðp̂0; p̂1Þ ¼ ð0:0042; 0:098Þ, it is 25 times

more likely to experience an earthquake at state 1 (active

state) than state 0 (inactive state). Moreover, from

Table 2 Mean, standard errors (in brackets), median (in italics), and root mean squared error (in underline) of two sets of feasible parameter sets

based on 100 replications

Set 1 Set 2

True value EM algorithm Direct maximization True value EM algorithm Direct maximization

k̂0 10 9:9824
ð0:1332Þ
9:9688
0:1337

9:9830
ð0:1397Þ
9:9682
0:1400

12 12:0497
ð0:2417Þ
12:0490
0:2456

12:0384
ð0:2514Þ
12:0239
0:2531

k̂1 1 1:0007
ð0:0082Þ
1:0004
0:0081

1:0006
ð0:0087Þ
1:0005
0:0087

2 1:9993
ð0:0203Þ
1:9980
0:0202

2:0021
ð0:0182Þ
2:0013
0:0182

p̂0 0.1 0:1000
ð0:0013Þ
0:1000
0:0013

0:1001
ð0:0015Þ
0:1002
0:0015

0.05 0:0498
ð0:0011Þ
0:0498
0:0011

0:0500
ð0:0010Þ
0:0501
0:0010

p̂1 0.3 0:3000
ð0:0022Þ
0:3002
0:0022

0:3001
ð0:0019Þ
0:3001
0:0019

0.25 0:2501
ð0:0021Þ
0:2502
0:0021

0:2500
ð0:0020Þ
0:2500
0:0020

â0 �0:5 �0:4840
ð0:0885Þ
�0:4752
0:0895

�0:4871
ð0:0817Þ
�0:4907
0:0824

�1 �1:0200
ð0:2190Þ
�1:0333
0:2189

�0:9847
ð0:2489Þ
�1:0009
0:2482

â1 �0:2 �0:1998
ð0:0138Þ
�0:1997
0:0138

�0:2016
ð0:0129Þ
�0:1999
0:0130

�0:3 �0:3009
ð0:0320Þ
�0:2986
0:0319

�0:3093
ð0:0379Þ
�0:3029
0:0388

â2 0.1 0:1000
ð0:0022Þ
0:1002
0:0022

0:1000
ð0:0022Þ
0:0999
0:0022

0.3 0:3037
ð0:0343Þ
0:3002
0:0343

0:3137
ð0:0447Þ
0:3068
0:0465

b̂0 �2 �1:9968
ð0:1498Þ
�2:0111
0:1491

�2:0125
ð0:1668Þ
�2:0080
0:1664

�2:5 �2:5041
ð0:1127Þ
�2:5096
0:1122

�2:5120
ð0:1174Þ
�2:5194
0:1174

b̂1 �0:1 �0:0973
ð0:0360Þ
�0:0963
0:0359

�0:1063
ð0:0378Þ
�0:1110
0:0382

�0:1 �0:1010
ð0:0201Þ
�0:1014
0:0200

�0:0995
ð0:0275Þ
�0:1016
0:0274

b̂2 0.2 0:2023
ð0:0119Þ
0:2011
0:0121

0:2034
ð0:0117Þ
0:2023
0:0121

0.1 0:1002
ð0:0021Þ
0:1001
0:0021

0:1001
ð0:0023Þ
0:1002
0:0023
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ðk̂0; k̂1Þ ¼ ð2:5402; 1:9564Þ, state 0 has smaller earthquake

magnitudes than state 1 on average. The parameters a0 and
b0 represent the baseline effect on the transition

probabilities from state 0 to 1 and from state 1 to 0,

respectively. In particular, with covariate Tn ¼ 0, the

baseline transition probability matrix is

Fig. 5 Estimates of states for a subsample of size N ¼ 200; 000 under the case N ¼ 5; 000; 000. True states (top); estimated states by the Viterbi

algorithm (middle); estimated states by local decoding (bottom)

Fig. 6 Prediction of 50 future changes in hidden state with prediction intervals; true change-points (middle); the prediction intervals (top and

bottom)
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P ¼

1

1þ expðâ0Þ
expðâ0Þ

1þ expðâ0Þ
expðb̂0Þ

1þ expðb̂0Þ
1

1þ expðb̂0Þ

0

B
B
B
@

1

C
C
C
A

¼
0:9995 0:0005

0:0172 0:9828

� �

;

ð17Þ

indicating that it is more likely for the hidden process to

transit from state 1 to 0 than from state 0 to 1. Moreover, in

the long run, the approximate distribution of hidden states

is

P̂n ¼
0:9995 0:0005

0:0172 0:9828

� �n

!

0:9718 0:0282

0:9718 0:0282

� �

as n ! 1;

ð18Þ

and thus the system is more likely to remain in state 0.

Fig. 7 Prediction of 20 future earthquakes of magnitudes > 5 with prediction intervals on occurrence time (left) and magnitudes (right); true

change-points (middle); prediction intervals (top and bottom)

Fig. 8 Prediction of 10 future earthquakes of magnitudes > 6 with prediction intervals on occurrence time (left) and magnitudes (right); true

change-points (middle); prediction intervals (top and bottom)

Stoch Environ Res Risk Assess (2018) 32:1415–1434 1427

123



Next, a1 and b1 measure the effect of the time that has

passed since the last earthquake Tn on transition probabil-

ities. The negative estimates â1 ¼ �0:008 and b̂1 ¼
�0:137 indicate that a large Tn favors the hidden process

remaining in the same state. Indeed, whether a large Tn

results in a longer expected waiting time until the next

earthquake has been considered by Davis et al. (1989) and

Sornette and Knopoff (1997). It is found that when Tn
follows heavy-tailed distributions, the expected waiting

time for the next earthquake increases when Tn increases,

Fig. 9 Magnitudes of earthquakes with Mmin ¼ 2 between 1981 and 2007 in Southern California (left) and logNm against magnitude m, where

Nm is the number of earthquakes with magnitude greater or equal to m (right)

Table 3 MLE and standard errors (in brackets) by the EM algorithm and direct numerical maximization of likelihood function of Models (7) and

(19)

Model (7) Model (19)

MLE EM algorithm Direct numerical

maximization

MLE EM algorithm Direct numerical

maximization

k̂0
k̂1

� �
2:5402
ð0:0106Þ
1:9564
ð0:0114Þ

2:5399
ð0:0110Þ
1:9565
ð0:0119Þ

k̂0
k̂1

� �
2:5354
ð0:0105Þ
1:9504
ð0:0114Þ

2:5354
ð0:0108Þ
1:9504
ð0:0115Þ

p̂0
p̂1

� �
0:0042

ð0:00002Þ
0:0980
ð0:0005Þ

0:0042
ð0:00001Þ
0:0980
ð0:0010Þ

p̂0
p̂1

� �
0:0042

ð0:00002Þ
0:0904
ð0:0005Þ

0:0042
ð0:00002Þ
0:0904
ð0:0005Þ

â0
â1

� �
�7:6489
ð0:0296Þ

�0:007902
ð0:0003Þ

�7:6534
ð0:0538Þ

�0:007927
ð0:0005Þ

p̂01 0:0001
ð0:000004Þ

0:0001
ð0:000004Þ

b̂0
b̂1

� � �4:0452
ð0:0281Þ

�0:137088
ð0:0049Þ

�4:0569
ð0:0641Þ

�0:136614
ð0:0140Þ

p̂10 0:0044
ð0:0002Þ

0:0044
ð0:0002Þ

Maximum likelihood �498408:8 �498410:9 Maximum likelihood �498968:7 �498968:7
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and vice versa for Tn following thin-tailed distributions. As

a heavy-tailed distributed Tn corresponds to less frequent

earthquake occurrence (state 0), a longer waiting time for

the next earthquake agrees with our quantitative finding

that the hidden process tends to stay in state 0. Analo-

gously, as a thin-tailed distributed Tn corresponds to fre-

quent earthquake occurrence (state 1), a shorter waiting

time for the next earthquake agrees with our quantitative

finding that the hidden process tend to remain in state 1.

6.2 Prediction

Using the parameters estimated by the EM algorithm, the

hidden states are estimated by the Viterbi algorithm and

Fig. 10 Estimate of hidden states by the Viterbi algorithm (top) and local decoding (bottom)
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local decoding, see Fig. 10. Compared to the Viterbi

algorithm, local decoding seems to overestimate the fre-

quency of changes in the hidden state, which is similar to

the findings in the simulation. Thus, the estimated current

state ŝN from the Viterbi algorithm is used for prediction.

The prediction algorithm introduced in Sect. 4 is carried

out to predict the future hidden state and earthquakes with

magnitudes > 5 and > 6 between 2008 and 2015. Specif-

ically, 1000 sample paths are simulated to construct the

95% prediction intervals (Figs. 11, 12 and 13).

Among the first 20 future earthquakes of magnitudes

> 5, 19, and 18 earthquakes are within the 95% prediction

intervals of the occurrence time and magnitude, respec-

tively. For the one missed earthquake in the occurrence

time prediction, the difference of the lower bound of the

prediction interval and the earthquake is only 1 day. For the

two missed earthquakes in the magnitude prediction, one

has magnitude 5.00 while the lower bound is 5.01. Another

missed earthquake with magnitude 7.2 is captured when we

consider the prediction of earthquakes with magnitudes >

6 in Fig. 13. In addition, note that while several aftershocks

with magnitudes > 5 occurred after the large earthquake of

magnitude 7.2, which is shown as a long horizontal line in

Fig. 12, the prediction intervals still cover the aftershocks.

6.3 Comparison with other models

In this section we compare the proposed Model (7) with a

model without time-varying covariate, and a popular model

for earthquake dynamics, the Epidemic Type Aftershock

Sequence (ETAS) model by Ogata (1988, 1998).

6.3.1 Model without time-varying covariate

This model simplifies Model (7) by removing the time-

varying covariate to model fSng, which reduces to a tra-

ditional homogeneous HMM. The modeling of earthquake

catalogue fAng follows (7) except that fTng is not included

in the modeling of fSng. In summary, the reduced earth-

quake prediction model for the earthquake catalogue fAng
is given as

An ¼MnIn; ð19Þ

where Mn �Left-truncated expðkSn ;MminÞ, In �Bernoulli

ðpSnÞ,

PðSn ¼ 1jSn�1 ¼ 0Þ ¼p01n ¼ p01;

PðSn ¼ 0jSn�1 ¼ 1Þ ¼p10n ¼ p10;

p00n ¼ 1� p01;and &p11n ¼ 1� p10:

The parameters of interest are collected as

h ¼ fk0; k1; p0; p1; p01; p10g 2
H ¼ Rþ � Rþ � ð0; 1Þ � ð0; 1Þ � ð0; 1Þ � ð0; 1Þ:

The estimation results are summarized in Table 3. Note

that the estimates of ks and ps in Models (7) and (19) are

similar because the earthquake occurrence and magnitude

depend on the state itself but not on the state dynamics. On

the other hand, Model (19) does not have a1 and b1 as in

Model (7), and thus does not capture the effect of

covariates.

Fig. 11 Prediction of 50 future changes in hidden state with line plots; median (middle); interquartile range (top and bottom)
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6.3.2 ETAS model

The ETAS model consists of a marked Poisson process

N(t) at a particular time point t 2 ½0; T � with magnitude

M as the mark, where [0, T] is the period of study. The

process has a self-exciting conditional intensity kðt;MjDtÞ
depending on the history Dt ¼ fðtn;MnÞ; tn\tg of the

earthquake occurrence time ftng and magnitude fMng up to
time t, where n ¼ 1; 2; . . .;N and N is the total number of

earthquakes in the catalogue. In particular, the conditional

intensity is defined by

kðt;MjDtÞ ¼ jðMÞkðtjDtÞ; ð20Þ

where j(M) is the distribution of the magnitude, assumed to

be conditionally independent of the occurrence time and

locations, and

Fig. 12 Prediction of occurrence time (left) and magnitudes (right) of

20 future earthquakes of magnitudes greater or equal to 5; true value

(middle; solid); 95% prediction intervals by Model (7) (top and

bottom; solid); 95% prediction intervals by model without time

covariate (top and bottom; dashed); 95% prediction intervals by the

ETAS model (top and bottom; dotted)

Fig. 13 Prediction of occurrence time (left) and magnitudes (right) of

10 future earthquakes of magnitudes greater or equal to 6; true value

(middle); 95% prediction intervals by Model (7) (top and bottom;

solid); 95% prediction intervals by model without time covariate (top

and bottom; dashed); 95% prediction intervals by the ETAS model

(top and bottom; dotted)
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kðtjDtÞ ¼ lþ
X

fn:tn\tg
AeaðMn�MminÞ 1þ t � tn

c

	 
�p

: ð21Þ

The parameters of interest are h ¼ ðl;A; a; c; pÞ: Note that

the second term in (21) describes the aftershocks effect

from each previous earthquake, which helps to explain the

earthquake clustering behavior.

6.3.3 Prediction comparison

In this section, we compare the performance of the pro-

posed Model (7) with Model (19) and the ETAS model

using the earthquake catalogue in Southern California.

Analogous to Sect. 6.2, we fit the Model (19) and ETAS

model using the data from 1981 to 2007, and follow Steps 3

and 5 of the prediction algorithm in Sect. 4 to predict

future earthquakes from 2008 to 2015. The R package

PtProcess is used for the fitting of the ETAS model, and

the thinning method by Ogata (1981) is used for simulating

the marked point processes (Team 2016). The results are

shown in Figs. 12, 13 and 14.

First, we compare the fitting of Model (7), (19) and the

ETAS model. Figure 14 shows a typical year of earthquake

observations in Southern California, and simulated earth-

quake observations by Model (7), (19) and the ETAS

model using the corresponding estimated parameters.

Observe that clusters of earthquakes exist in both figures of

simulated observations. However, the clusters from the

ETAS model are usually triangular-shaped and appear after

an earthquake with a large magnitude (indicated by circles

Fig. 14 Earthquakes with magnitudes > Mmin ¼ 2, where Mmin is the magnitude of completeness of the catalogue. In 2001 Southern California

(top); simulated by Model (7) (row 2); simulated by Model (19) (row 3); simulated by the ETAS model (bottom)
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in Fig. 14), while the clusters from Model (7) and (19) are

usually finger-shaped (indicated by rectangles in Fig. 14).

Model (7) gives finger-shaped clusters with varying width

while Model (19) gives thin finger-shaped clusters. The

triangular-shaped features of the ETAS model is a conse-

quence of (21) that aftershocks depend on the magnitude of

the original earthquake and decays with the passing of

time. On the other hand, the finger-shaped feature in the

proposed model results from the dynamic of the hidden

Markov process in which it tends to remain in the active

state for a relatively short period. Interestingly, it appears

that both triangular-shaped and finger-shaped features

appear in real earthquake observations. Thus, the theory of

aftershock and state-changes in underground dynamics are

both adequate in describing real earthquake data.

Finally, we compare the prediction results of the three

models. From Fig. 12, the 95% prediction intervals by

Models (7) and (19) both cover 19 earthquake occurrences

and 18 earthquake magnitudes, while the corresponding

95% prediction intervals by the ETAS model only covers

18 earthquake occurrences and 17 earthquake magnitudes.

More importantly, the proposed Model (7) provides a more

accurate prediction than Model (19) and the ETAS model,

with a narrower 95% prediction interval for predicting the

first 20 earthquakes of magnitude > 5. This suggests that

Model (7), which incoporates covariates in the dynamic of

the hidden state, gives better performance than the models

without covariates. For the prediction of first 10 earth-

quakes of magnitude > 6, Fig. 13 shows that the ETAS

model gives a narrower 95% prediction interval comparing

to the Models (7) and (19). However, the accuracy of the

prediction is confined by the small number of earthquakes

with magnitude > 6 in the dataset, which is only 10 among

more than 90,000 earthquakes in the dataset for model

fitting. Also, there is only 1 earthquake with magnitude > 6

among 20,000 earthquakes in the testing dataset for pre-

diction. Thus, more data are required to compare the

accuracy of the prediction of all the three models in

earthquakes of magnitude > 6.

7 Conclusion and future research directions

In this paper, we develop a novel Hidden Markov Model

for earthquake modeling and forecasting by introducing a

latent Markov process to model the unobservable state of

the underground dynamics. The proposed model is capable

of predicting the change-in-state of the hidden Markov

chain, and thus can predict the arrival time and magnitude

of future earthquake occurrences simultaneously. Specifi-

cally, the transition probabilities are modeled by possibly

time-varying covariates and past observations using a link

function. This enables better understandings of the

underground dynamics of earthquakes and prediction of

future hidden states, and thus future earthquakes’ fre-

quencies and magnitudes. In particular, the time that has

passed since the previous earthquakes and logistic function

are chosen as the covariate and the link function respec-

tively in our study. Simulation studies and applications

with comparison with the ETAS model on a real earth-

quake dataset indicate the validity of the proposed model

on modeling earthquakes occurrence. Theoretical results,

including the stationarity and ergodicity of the proposed

model, as well as consistency and asymptotic normality of

model parameter estimation, are established in the Sup-

plementary Material.

Some directions of further investigations related to

extending the scope of the model or improving the mod-

eling of earthquake mechanism are summarized as follows.

For example, the periodicities and long-term trend of

earthquake time series (Telesca et al. 2015), and the

occurrence of large earthquakes when a long time has

passed from the last large earthquakes (Fierro and Leiva

2017), may be included in the model. Moreover, the gen-

eralization to a space-time model can incorporate spatial

dependence and possible location-specific covariates on

modeling earthquake occurrences (Adelfio and Chiodi

2015).
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