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Materials and methods 

 

Recovering continuous measurements of seismic velocity changes 

Continuous crustal seismic velocity changes can be estimated by reconstructing the daily cross-

correlations of continuously recorded ambient seismic noise (6). Here, daily vertical-vertical 

cross-correlation functions were obtained from stacks of 31 cross-correlations of whitened and 

one-bit normalized raw seismic signals of 1–hour long, overlapped by 45 minutes (frequency 

range, 0.1-0.9 Hz). We also averaged the cross-correlation functions over a 5-day-long moving 

window, to enhance the coherence between the cross-correlation functions. The moving time 

interval of these windows is 1 day. 

As described in Clarke et al. 2011 (20), for a given seismic station pair, a daily velocity change 

measurement can be obtained by comparing a daily cross-correlation function to a reference 

cross-correlation function using moving-window cross spectrum (MWCS) analysis (21). 

However, the choice of an arbitrary reference, which is usually the stack of all of the daily 

correlation functions for a given station pair, is ambiguous, and can lead to large outliers when a 

daily cross-correlation and the reference function are not similar. In this study, we generalized 

the process of recovering continuous measurements of seismic velocity changes by avoiding the 

use of an arbitrary reference function. Indeed, we apply the MWCS analysis to all daily cross-

correlation pairs and invert for a continuous velocity change time series for each station pair 

separately.  This approach allows us to deal with a large number of error-prone velocity change 

estimates where errors are dealt within a probabilistic way. 

Let us consider ccfi as a cross-correlation function that corresponds to day i. We can thus 

estimate a seismic velocity (v) change between day i and day j by applying the MWCS analysis 

to ccfi and ccfj: 
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In a systematic manner, we can then estimate a velocity change between all of the pairs of daily 

cross-correlation functions for one given station pair. This constitutes the data vector of Equation 

(2): 
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where d is of length 
2

)1(* nn
, and n is the number of daily cross-correlation functions. 

Our final goal is to reconstruct the time series of the daily velocity changes. We can define these 

velocity changes as
ref
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 , with vref the constant reference velocity averaged along the 

travel path of the studied coda waves. The series of velocity changes constitutes our model 

vector m of Equation (3): 
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where m is of length n, the number of daily cross-correlation functions. 

Let us write a relation between m and d: 
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Noting that iv  and ijv are small compared to 1 (on the order of 10
-3

), we can write at the first 

order the direct linear relationship between d and m as ijij vvv    or d = Gm, with G being a 

sparse matrix of dimension [
2

)1(* nn
, n]: 
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The model vector m can be estimated by using a Bayesian least-squares inversion, as described 

by Tarantola (2002) (22): 
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where Cd is a covariance matrix of dimension [
2

)1(* nn
,

2

)1(* nn
 ] that describes the 

Gaussian uncertainties of the data vector d. These values correspond to the estimated 

uncertainties of each ijv estimate, using the MWCS analysis. 

Cm is an a priori covariance matrix of dimension [n,n] for model vector m. The parameter α is a 

weighting coefficient. It is determined in a way that matrix  GCG d

t 1   and  1. 

mC  have 

approximately the same weight. The values of Cm describe for day i how iv is correlated to jv

at day j: 
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where β is a characteristic correlation length between the model parameters v . 

Before computing the noise cross-correlations, we first whiten the raw data in the frequency 

range of 0.1 Hz to 0.9 Hz, and apply one-bit normalization. Figure S1 shows an example of the 

noise correlations for station pair ASG-SSN, located in the Mt. Fuji area about 500 km from the 

Tohoku-oki earthquake epicenter. Overall it shows that the pre-processing we use allows us to 

retrieve stable cross-correlation functions, even during the strong aftershock activity time period 

following the March 2011, Tohoku-oki earthquake. 

 



 

Fig. S1. Daily cross-correlation functions along the calendar time from Sept. 2010 (top) to Sept. 

2011 for station pair ASG-SSN located in the Mt. Fuji region. We use 5-day moving window 

averaging to stabilize the cross-correlation functions. The black dashed line shows the time of 

the March 11, 2011 Tohoku earthquake. 

 

To estimate a velocity change between cross-correlations at days i and j ( ijv ), we first used 

MWCS analysis to evaluate the time delays between the correlation functions in a series of 

windows centered between the direct surface-wave arrival time and a lapse time of 60 s in the 

coda. Each window is 10 seconds long and we overlap them by 80 %. Under the hypothesis of a 

uniform change in the medium, the relative velocity change is given by the slope of the function 

delay versus the lapse time (6). 

Figure S2 shows the result of the inversion for a continuous time series of velocity changes using 

three different characteristic lengths of correlation between model parameters v  (β).  

Overall, we see that using a small β value (β = 5), the drop of seismic velocity associated with 

the Tohoku-oki earthquake starts the day of the Tohoku-oki earthquake and not before, as could 

be misinterpreted from the velocity change time series for larger β values. For β=5, the velocity 

reduction occurs on the day of the main shock because the stacked cross-correlation at a given 

day is an average of cross-correlations of that particular day and of the 4 previous days. 

Moreover, using larger β values, we obtain highly precise velocity change curves that avoid 

short-term fluctuations. For information, Fig. 2A of the main manuscript is obtained using 

β=1000. 



 

 

Fig. S2. Inverted velocity changes for station pair ASG-SSN for different values of correlations 

length β. The black dashed line shows the time of the March 11, 2011, Tohoku earthquake. 

 

The errors on velocity change estimates can be assessed through the diagonal terms of the 

posterior covariance operator, as in Equation (8): 

  111   md

t

post CGCGCm   (8). 

For the results shown in Fig. S2, the errors are small compared to the background fluctuations of 

velocity changes (less than 0.1 %). 

It is also possible to estimate how well the reconstructed velocity changes explain the data ijv by 

computing the misfit function (Gm-d). For the above example, the misfit values were 0.039%, 

0.04% and 0.046% for β = 5, 1000 and 10000 respectively. This shows that all three velocity 

change time series can explain the data ijv  well. 

Finally, it is possible to compute the trace of the resolution operator, as in Equation (9):  
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The trace of R gives the number of parameters resolved by the dataset in the balance with the 

number of parameters resolved by the a priori information given by Cm. In this example, the 

trace of R is 356, 162 and 56 for inversions using β = 5, 1000 and 10000, respectively. In this 



case, a perfectly resolved velocity change time series would have trace(R) = 365, which is the 

number of days in the studied time period. 

 

Mapping of velocity changes 

In this study, vertical-vertical noise correlation functions with inter-station distances <30 km 

were selected. According to the frequency range used (0.1-0.9 Hz), these noise correlations are 

very likely dominated by Rayleigh waves. Considering the sensitivity kernels of the Rayleigh 

waves at these frequencies (23), the measurements essentially characterize shear wave velocity 

changes averaged between the surface and about 10 km in depth. 

Because we measure travel time perturbations of the coda of the reconstructed Green’s functions, 

we can consider that the spatial sensitivity of our observations are peaked around the station 

positions (24). We can thus simply assign to each station a velocity change that is the mean of 

the velocity changes measured for the pairs with which a station was involved. The map of 

velocity changes is obtained by interpolating velocity changes at each station on a grid with 1 km 

of resolution. This approach allows us to directly estimate local seismic velocity changes and to 

perform an average of velocity changes estimates over different azimuthally distributed station 

pairs, thus reducing the possible bias due to non-isotropic noise-source distribution. 

The Figures of the main manuscript were plotted using Generic Mapping Tool (GMT) with 

global multi-resolution topography (GMRT), obtained using MapTool from the Marine 

Geoscience Data System (25). 

 

Static strain change computation 

Coseismic strain changes at a depth of 5 km, where the seismic waves used in the present study 

are the most sensitive, cannot be derived directly from observations, because all of the 

observations are at the surface. Here, we first invert the coseismic slip distribution from the 

Global Navigation Satellite System observations, and then we calculate the strain changes at a 

depth of 5 km from the thus-derived slip distribution.  

We first processed the Global Navigation Satellite System data from 482 sites in eastern Japan, 

to obtain station coordinates for every second for each site. The coseismic displacements were 

calculated by subtracting the station coordinates from the mean between 9 min and 19 min after 

the main shock, to that between 1 min and 11 min before the main shock. This allowed us to 

eliminate the deformation due to large aftershocks, such as the one with magnitude ~8 that 

occurred 29 min after the main shock.  

In the inversion, we assume that the observed displacements are due to the slip on the plate 

interface embedded in an elastic, homogeneous, and isotropic medium. The geometry of the plate 

interface is obtained from seismic tomography and earthquake locations, to represent a realistic 

and curved plate interface (26, 27). The inversion is done by adaptively discretizing the plate 

interface so that the element sizes are smaller where the spatial resolution is better (28). We do 

not apply any spatial smoothing, so that there is no room for the final solution to be altered by 

different smoothing constraints. Once the slip distribution is inverted, we can analytically 

estimate the strain changes at arbitrary locations and depths, because here we assume an elastic, 

homogeneous, and isotropic medium (29).  



 

Mapping the seismic velocity susceptibility using observations of the peak ground velocity 

We used the KiK-net borehole accelerometers (30, 31) that are stored in the same tube together 

with the Hi-net velocity sensors (30, 32) to estimate the PGV. The PGV for each component was 

highpass filtered at 0.01 Hz, after baseline correction. We took the mean PGV over the three-

components to estimate the dynamic strain/stress. Figure 2B of the main manuscript shows the 

seismic velocity susceptibility as the ratio between the seismic velocity changes and the dynamic 

stress changes. As the relationship between seismic velocity and the dynamic stress changes is 

likely nonlinear, and also because of the uncertainty associated with estimates of small seismic 

velocity and dynamic stress changes, we applied damping on the dynamic strain before 

computing the ratio. For the dynamic strain change computation, we changed to 10 cm/s peak 

ground velocity values lower than 10 cm/s. 
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