
Supplementary Materials:

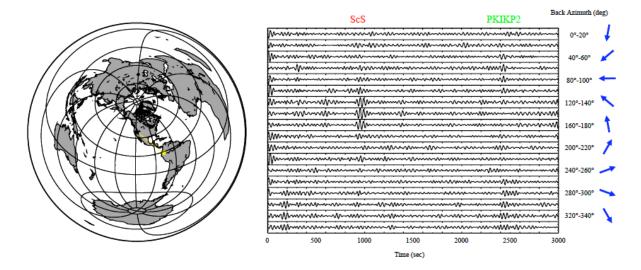
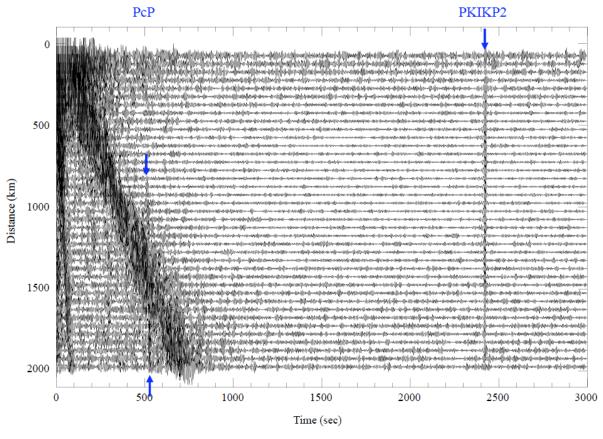


Fig. S1. Same as Fig. 2b but using 10-km distance bins. An air wave propagating near the sound speed (\sim 320 m/s) is observed.



V M.D.I//	1-4 1	J 41.	N/	p:
Year MDhr/mm/ss				
2010 8 3 12/08/26	1.24 126.23	1 41.0	6.3	NORTHERN MOLUCCA SEA
2010 8 4 07/15/34	-5.50 146.8	1 225.6	6.5	EASTERN NEW GUINEA REG.,
2010 8 4 12/58/24	51.42 -178.6	5 27.0	6.4	ANDREANOF ISLANDS, ALEUT
2010 8 4 22/01/43	-5.75 150.7	6 44.0	6.9	NEW BRITAIN REGION, P.N.
2010 8 10 05/23/45	-17.54 168.0	7 25.0	7.3	VANUATU ISLANDS
2010 8 12 11/54/15	-1.27 -77.3 3	1 206.7	7.1	ECUADOR
2010 8 13 21/19/33	12.48 141.4	8 10.0	6.9	SOUTH OF MARIANA ISLANDS
2010 8 14 07/30/16	12.35 141.4	9 10.0	6.3	SOUTH OF MARIANA ISLANDS
2010 8 15 15/09/29	-5.69 148.3	4 174.7	6.3	NEW BRITAIN REGION, P.N.
2010 8 16 03/30/53	3 -17.76 65.6	5 9.8	6.3	MAURITIUS - REUNION REGI

Fig. S2. Daily stacked cross-correlations for the month of August 2010. For each day, all available cross-correlations with distances between 1000 and 1050 km are stacked and bandpassed between 20 and 50-sec period. Days with earthquakes larger than 6.3 Mw in the CMT catalog are highlighted in red, and earthquake information is listed. Note the correlation between days with high core-phase amplitudes and large earthquakes. The high core-phase amplitudes on 8/5 (highlighted in blue) are likely due to the Mw 6.9 earthquake near the island of New Britain in Papua New Guinea late on 8/4. The 2-hour time difference between the earthquake and the onset of the 8/5 time series used in the cross-correlation suggests that the observed core phases originate from long-lasting bodywave coda excited by the earthquake.

Fig S3. Stacked cross-correlations from August 12 for different back-azimuth directions. The location and the great circle path of the Ecuador earthquake on August 12 are shown at left (yellow circle and line). For each 20° back-azimuth bin, all available cross-correlations with distances between 1000 and 1050 km are stacked and bandpassed between 20 and 50-sec period. Note that we separate the positive and negative components of cross-correlations here such that the stacked cross-correlations reflect the energy coming from the different back-azimuth directions. The strong ScS phases observed between back azimuths of 120° and 180° suggest that the observed phases are due to ScS reverberations directly from the Ecuador earthquake. While strong PKIKP² amplitudes for back azimuths between 300° and 360° may be due to direct phases emitted by the earthquake, the observed PKIKP² phases for back azimuths between 40° and 140° are likely due to scattering and the wide Fresnel zone of the phase.

Fig. S4. Same as Fig. 2b but bandpassed between 5 and 10-sec period. Both PcP and PKIKP² can be observed.