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Evidence for a Supershear Transient during the 2002 Denali
Fault Earthquake

by Eric M. Dunham and Ralph J. Archuleta

Abstract Elastodynamic considerations suggest that the acceleration of ruptures
to supershear velocities is accompanied by the release of Rayleigh waves along the
fault from the stress breakdown zone. These waves generate a secondary slip pulse
trailing the rupture front, but manifest almost entirely in ground motion perpendicular
to the fault in the near-source region. We construct a spontaneously propagating
rupture model exhibiting these features and use it to explain ground motions recorded
during the 2002 Denali fault earthquake at pump station 10, located 3 km from the
fault. We show that the initial pulses on both the fault normal and fault parallel
components are due to the supershear stress release on the fault, whereas the later-
arriving fault normal pulses result from the trailing subshear slip pulse on the fault.

Online material: MPEG movies of rupture history and ground motion.

Introduction

On 3 November 2002, a M,, 7.9 earthquake shook cen-
tral Alaska. Rupture initiated at 22:12:41.0 coordinated uni-
versal time (UTC) on the Susitna Glacier thrust fault before
subsequently transferring onto the Denali fault. After prop-
agating 240 km east on this fault, the rupture branched onto
the Totschunda fault. Only one instrument, Pump Station 10
(PS10), maintained by the Alyeska Pipeline Service Com-
pany, recorded near-source ground motions. PS10 is located
approximately 70 km east of the epicenter along the Denali
fault near the Trans-Alaska Pipeline. Figure 1 provides a
schematic map of the fault geometry. Finite fault inversions
and geological considerations support a right-lateral strike-
slip mechanism on a nearly vertical fault near PS10
(Eberhart-Phillips et al., 2003). Situated only 3 km north of
the fault, the station recorded a particularly interesting se-
quence of strong ground-motion pulses as the rupture ex-
tended past it. Figure 2 shows the instrument-corrected re-
cords, which have been rotated into fault normal (FN) and
parallel (FP) components (Ellsworth et al., 2004).

A single one-sided pulse (labeled A in Fig. 2) charac-
terizes the FP component. The pulse is narrow (approxi-
mately 3 sec rise time) and roughly symmetric. The FN com-
ponent contains two similarly narrow pulses, the first (B)
concurrent with A. The second (C) arrives 2.6 sec later and
is only slightly smaller in amplitude. Furthermore, about
6.5 sec after the initial pulse, a broad motion (D) begins on
the FN component, comprising motion toward and then away
from the fault.

We focus on several features. First, the FP amplitude is
approximately 1.5 times larger than FN. This is not typical
of large strike-slip earthquakes, as discussed by Archuleta

and Hartzell (1981) and Hall ez al. (1995). As several authors
have suggested (Ellsworth ef al., 2004; Aagaard and Heaton,
2003) and we corroborate, this is accounted for by super-
shear rupture speeds. However, kinematic analyses that al-
low slip only once at the rupture front have failed to explain
pulses C and D. We show that these pulses arise naturally
in dynamic models that exhibit a transition from sub-
Rayleigh to supershear rupture speeds; as such, they are a
uniquely transient feature not present in steady-state solu-
tions. A consideration of the dynamics of such a transition
suggests that the breakdown in stress occurring behind the
rupture front releases interface waves along the weakened
fault that trail the faster-moving supershear front. These are
essentially Rayleigh waves dispersed by friction, although,
depending on the stability of the frictional sliding and rup-
ture pulse width, these may be accompanied by a stress drop.
These interface waves cause additional slip but carry almost
all of their energy in FN motion (pulse C), hence, their ab-
sence from the FP component.

As is well known, mode II cracks are allowed to prop-
agate within two steady-state velocity regimes: either below
the Rayleigh wave speed (sub-Rayleigh) or between the S-
and P-wave speeds (supershear). Propagation between the
Rayleigh and S-wave speeds is associated with energy gen-
eration rather than dissipation within the breakdown zone,
indicating that these velocities should be rejected as un-
physical. Theoretical studies suggested the possibility of
supershear ruptures, beginning more than three decades ago
with a study by Burridge (1973) of the self-similarly ex-
panding mode II crack with a critical stress-fracture crite-
rion. His analytical solution showed that as a sub-Rayleigh
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Figure 1.  Fault geometry around PS10 (after Ells-

worth et al. [2004]).
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Figure 2. Instrument-corrected ground motions

for PS10. The main velocity pulses are labeled to clar-
ify discussion in the text. The record begins at the P-
wave arrival from the thrust event at 22:12:56.36 UTC
(Ellsworth et al., 2004).

crack extends, a peak in shear stress traveling at the S-wave
speed develops ahead of the crack tip. For prestress levels
sufficiently close to the critical stress, this peak exceeds the
critical level and could initiate a supershear rupture. This
was later confirmed by the numerical experiments of An-
drews (1976), which extended the fracture criterion to a
more realistic condition requiring finite energy dissipation
for crack growth.

Seismological observations suggest that supershear
propagation has occurred, at least locally, in several crustal
strike-slip events. Archuleta (1984) concluded that rupture
velocities exceeding the S-wave speed were necessary to ex-
plain records from the 1979 Imperial Valley event. Strong-
motion recordings of the 1999 Izmit and Diizce events sug-
gest supershear growth, at least in one direction (Bouchon
et al., 2000, 2001). Waveform modeling of regional records
from the 2001 Kunlunshan earthquake also indicates super-
shear velocities (Bouchon and Vallée, 2003).
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Recent laboratory studies by Rosakis and coworkers
(Rosakis et al., 1999; Xia et al., 2004) provided experimen-
tal verification of supershear crack growth. Several numer-
ical (Geubelle and Kubair, 2001; Fukuyama and Olsen,
2002; Dunham et al., 2003) and analytical (Huang and Gao,
2001, 2002; Samudrala et al., 2002; Kubair et al., 2002; Guo
et al., 2003) studies have focused on properties of and mech-
anisms for triggering supershear propagation.

Elastodynamic Considerations

The allowed velocity regimes and supershear transition
mechanism follow from a study of the waves that transmit
shearing forces from within the breakdown zone to the un-
broken material ahead of the rupture front. To illustrate this,
we consider a semi-infinite mode II crack constrained to the
plane y = 0 in a homogeneous elastic medium, with fields
depending on x and y only. The medium is characterized by
a shear modulus # and P- and S-wave speeds c, and c,. At
time t = 0, the crack tip, which is moving along the positive
x axis at velocity V, passes the origin.

To solve for the fields within the medium, we must
specify boundary conditions on the material directly on ei-
ther side of the fault. In order that the fault does not open,
we require continuity of normal displacement. Continuity of
shear and normal tractions across the interface follows from
momentum conservation. Furthermore, at each point on the
fault, we must specify either slip or shear traction. In contrast
to a kinematic source representation, in which the slip field
is specified at every point on the fault, we follow the usual
dynamic representation by specifying shear traction behind
the moving crack tip and slip (identically zero) ahead. We
require the stress field to be nonsingular at the tip, which is
accomplished by introducing a finite length or timescale over
which the breakdown in stress occurs, as in the cohesive
zone models of Ida (1972), Palmer and Rice (1973), and
Andrews (1976).

We then consider an advance of the crack tip over an
infinitesimal time interval dz. As the crack extends, the shear
traction relaxes behind the crack tip. The exact process by
which this occurs depends on the specific friction law or
fracture criterion. The linearity of the governing equations
allows us to construct the breakdown in stress as a super-
position of line tractions (extending infinitely in the z direc-
tion), each applied at some distance x = — L behind the
crack tip with amplitude F (force/length) and having step-
function time dependence. Because the shear traction at time
t = dt is specified, then F(x) = [o,(t = 0,x) — g,(t =
dz,x)] dx, where dx = V dt and g;; are the components of the
stress field created by slip. This is illustrated in Figure 3.
The region of nonzero stress drop, in contrast to the actively
slipping area in the kinematic representation, is the only
source of elastic waves in the dynamic representation.

Letting u; be the components of the displacement field
created by slip, we formally define this mixed boundary
value problem as
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Figure 3. Schematic diagram illustrating the su-

perposition of line tractions (stress drops) for x < 0.
The fault is locked for x > 0 and the crack advances
at velocity V over an infinitesimal time interval dr.

u(t,x,y = 0) = 0 for Vi < x < »

oy(txy = 0) = —FH®O3x + L) (1)
for —o0o < x < Vt

o,(tx,y = 0) =0 for —oo < x < o,

where H(7) is the step function and J(x) is the delta function.
The last equation, which states that the normal stress is un-
changed by slip, follows from symmetry conditions that
arise when requiring the continuity of both normal stress and
normal displacement.

Our approach to understanding dynamic crack growth
is similar to that taken by Freund (1972a,b), and our problem
is related to his so-called fundamental solution in the limit
that L — 0. The advantage to keeping L finite is conceptual,
affording us an insight into the elastodynamic processes oc-
curring within the breakdown zone.

We could further generalize this model by placing the
stress drop some distance off the fault within a damage zone.
In this case the superposition would be over the volume
containing the off-fault damage, rather than localized to the
area of the fault within the cohesive zone. Considering the
problem from this perspective, the transmission of forces to
the unbroken area ahead of the crack tip occurs with the
broken fault behind the crack tip playing the role of an in-
terfacial wave guide for the elastic waves emitted from
within the damage zone. Because we have posed the problem
within the framework of a mixed boundary value problem,
the transition between the regions in which we specify shear
traction and those in which we specify that slip vanishes (i.e.,
the crack edge) acts as a diffracting boundary. The waves
released by the stress drop overtake the crack tip and diffract
off of it (see Fig. 4).

The solution to our problem defines the Green function
for some distribution of shear tractions applied on the sliding
surface of a moving crack. Known as a transient weight
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Figure 4. Wavefronts generated by a stress drop
(marked by the circle) located some distance behind
a stationary crack tip, after both P and S waves over-
take the crack tip. Rayleigh waves and body waves
generated by Rayleigh waves diffracting off of the
crack tip are not shown to avoid excessive compli-
cation. The crack, denoted by the heavy line, lies in
the half-plane y = 0, x < 0. Direct and diffracted
waves are labeled, and H denotes a head wave re-
sulting from P-to-S conversion on the crack face.

function, it has a known analytical solution in the Fourier-
Laplace domain (Freund, 1974; Brock, 1982; Kuo and Chen,
1992; Freund, 1989; Broberg, 1999). However, since the
problem possesses a characteristic length, the solution is not
self-similar and requires multiple integrations to invert the
transforms and extract the space-time history of the velocity
and stress fields. Inversion of these transforms is, to the best
of our knowledge, absent from the literature except for the
use of asymptotic theorems to study the evolution of the
stress intensity factor. Consequently, we present instead a
numerical solution using the boundary integral methodology
proposed by Geubelle and Rice (1995). The slip velocity and
shear traction on the interface are shown as a function of
position and time in Figure 5 for a stationary crack tip. A
similar solution is obtained for sub-Rayleigh crack speeds;
only when the crack velocity exceeds some wave speed does
the wavefront pattern change since these waves will no
longer overtake the crack tip.

Up until the arrival of the P wave at the crack tip, the
solution is self-similar and identical with that of Lamb’s
problem (a shear line force applied on the surface of a
traction-free half-space), which is used to validate the nu-
merical method (see the inset in Fig. 5). As such, the main
features are well known. The line force emits P and S waves
with cylindrical wavefronts, as well as planar head waves
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Figure 5.  Evolution of slip velocity (x < 0) and shear traction (x > 0) after the
step-function application of a line stress drop of magnitude F at x = —L behind a

stationary crack tip. The color scale measures the nondimensionalized slip velocity and
shear traction labeled at the top. The inset compares the numerical slip velocity (points)
just prior to wave arrivals at the crack tip to the analytical solution for Lamb’s problem
(solid line). The peak in shear traction associated with the P-to-S wave conversion is

labeled PS.

and an interfacial Rayleigh wave. A point on the fault begins
to slip in the direction of the applied traction at the simul-
taneous arrival of the P wave and a head wave traveling
along the interface at the P-wave speed. This head wave is
a radiating S wave excited by evanescent P waves trapped
on the fault surface. Forward sliding continues until the ar-
rival of the S wave, at which point slip reverses, with the
interface sliding in the direction opposite the applied trac-
tion. Reverse sliding ceases when the Rayleigh wave arrives;
positive slip velocity peaks at and decays after its arrival,
with slip reaching the steady-state value only asymptotically
as is characteristic in two dimensions.

There is a direct correlation between the allowed prop-
agation velocity regimes and the direction of slip relative to
the applied traction, as pointed out by Das (2003). For a
given distribution in time and space of shear tractions (i.e.,
a prescribed rupture history), we could calculate the slip-
velocity history, which would be equivalent to that generated
in Lamb’s problem plus a correction to account for diffrac-
tions off of the crack tip, which are further discussed sub-
sequently. The rate of energy dissipation at each point on
the fault is the product of the shear traction and slip velocity,
from which we see that only when the fault slips in the

direction of the applied traction is energy dissipated. Reverse
motions, which we have allowed in our problem to render
it linear, are typically prevented by friction; otherwise, this
process would unphysically create energy.

Let us now take the steady-state limit of our problem.
In this case, it is more appropriate to consider fixing the
distance L in a frame that moves with the crack tip; such an
analysis was conducted by Burridge ef al. (1979) in their
study of the stability of supershear propagation velocities.
In the steady-state limit, only motions for which the apparent
velocity along the fault matches that of the crack tip remain
(i.e., those having a ray parameter of V~'). For subshear
propagation velocities, this implies that the driving force is
carried only by evanescent P and S waves on the fault sur-
face. A reversal in the direction of the shearing force carried
by these waves occurs at the Rayleigh speed, resulting in the
velocity range between the Rayleigh and S-wave speeds be-
coming forbidden. In the supershear regime, the P wave re-
mains evanescent but the S wave switches from evanescent
to radiating. The angle that the S wavefront makes with the
fault is the Mach angle arcsin(c,/V). The associated shear
fields retain a finite amplitude at infinity along the Mach
cone. The only velocity at which the S wave vanishes is the
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well-known V/2 times the S-wave speed (Eshelby, 1949). The
significance of this velocity appears clearly in the expression
for the traction components on a flat surface due to incident
plane waves (e.g., Aki and Richards, 2002, p. 132). In our
case, the situation is reversed, with traction changes on the
surface exciting some superposition of plane waves. Our
source is the application of a shear traction, with the normal
traction remaining constant. It follows from the expressions
in Aki and Richards (2002) that changes in shear traction
moving at \/2cs will not excite S waves.

We now return to the general transient problem and con-
sider the diffraction pattern that emerges when steady-state
conditions are not satisfied. This can occur when the crack
tip accelerates between two steady-state regimes or when the
magnitude of the stress drop is spatially heterogeneous. A
simple illustration of this phenomenon is the growth of an
initially steady-state crack into a region of increased stress
drop (an asperity), as in the numerical study of Fukuyama
and Olsen (2002). If we constrain the crack velocity to re-
main constant through this process, then the resulting fields
can be constructed as a superposition of the fields carried by
the original steady-state crack and the fields generated by
the additional stress drop within the asperity applied some
distance behind the moving crack tip, the remainder of the
fault behind the tip being traction-free. This additional so-
lution is exactly the transient diffraction problem we have
solved. If we relax the constant velocity condition and allow
the crack to grow spontaneously according to some fracture
criterion, then, provided that the additional energy released
within the asperity is sufficient, the diffracted P and S waves
will initiate supershear growth. If this energy is sufficiently
concentrated (by an abrupt large-amplitude asperity), then
the crack tip will be driven forward continuously by these
diffracted waves to a supershear velocity. If the asperity am-
plitude is smaller, yet still large enough to provide sufficient
energy to power the supershear rupture, then the diffracted
S-wave peak will build up gradually ahead of the crack tip
and the supershear transition will be discontinuous.

Another source of these transient features is the pres-
ence of an additional diffracting boundary, such as the sec-
ond crack tip (see, e.g., figure 1 of Eshelby [1969]) or the
healing front in a rupture pulse model. The multiple diffrac-
tions between the two expanding crack tips generate the S-
wave stress peak that appears in analytical self-similar so-
Iutions for sub-Rayleigh cracks (Burridge, 1973; Broberg,
1994, 1995; Freund, 1989; Broberg, 1999). The supershear
transition appearing in the numerical experiments of An-
drews (1976) on a bilaterally extending crack with homo-
geneous stress drop occurs by this mechanism. For an ex-
panding crack, these diffractions have significant amplitude
only during nucleation, where the characteristic length con-
trolling the development of these features is the nucleation
zone size, as found by Andrews (1976). In this case the S-
wave peak builds up gradually, resulting in a discontinuous
triggering of the supershear rupture some distance ahead of
the original sub-Rayleigh rupture.
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For supershear propagation velocities, the Rayleigh and
S waves released within the breakdown zone will not over-
take the crack tip. As self-similar analytical solutions in this
velocity regime reveal (Burridge, 1973; Broberg, 1994,
1995), slip is not concentrated uniquely at the rupture front,
as it is for sub-Rayleigh ruptures. A second peak in slip
velocity travels at the Rayleigh speed. Similarly, spontane-
ously propagating cracks that accelerate from sub-Rayleigh
to supershear velocities leave behind a secondary slip pulse
at the Rayleigh speed. This feature emerges naturally from
our representation of crack growth as Rayleigh waves gen-
erated within the breakdown zone that never reach the faster-
moving crack tip. If the supershear transition is triggered by
an asperity, then these Rayleigh waves derive their energy
from the additional stress release within the asperity. As we
later discuss, the signature of these Rayleigh waves in seis-
mic radiation manifests almost entirely in ground motions
perpendicular to the fault plane.

The effect of friction on the fault will be to disperse
these Rayleigh waves. The dispersion relation for a linear-
ized version of rate and state friction is given by Rice et al.
(2001). Depending on frictional parameters and sliding con-
ditions, larger wavelengths may unstably grow into the non-
linear regime until a stress drop occurs. In this way, the
Rayleigh wave could be viewed as a secondary rupture.

Extension of this analysis to three-dimensional crack
propagation is complicated. The representation of the break-
down zone consists of a superposition of point shear trac-
tions applied some distance behind an arbitrarily shaped
moving crack edge. Curvature of the crack edge focuses or
defocuses the radiation released by the tractions (Achenbach
and Harris, 1978). Such focusing alone can be sufficient to
trigger localized supershear bursts (Dunham ez al., 2003).
Furthermore, the driving force provided by the stress drop
becomes directionally dependent. Including friction and ro-
tation of the slip vector introduces another nonlinearity into
the problem. An exact solution for a point stress drop in three
dimensions, neglecting any diffractions but including a lin-
earized treatment of rake rotation under constant friction, is
given by E. M. Dunham (unpublished manuscript, 2004).

Spontaneous Modeling

We construct a simple rupture model exhibiting a tran-
sition from sub-Rayleigh to supershear propagation and
show that the ground motion explains several features re-
corded at PS10. We use a staggered-grid finite-difference
code with second-order explicit time stepping (Favreau et
al., 2002). The method converges spatially at eighth order
away from the fault and has perfectly matched layer-
absorbing boundaries on all sides, except the free surface, to
prevent artificial reflections from contaminating the solution.
Slip is constrained to be horizontal, rendering the dynamics
insensitive to the absolute stress level. Reverse slip is pro-
hibited.
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Because the station is located only 3 km from the Denali
fault and many tens of kilometers from the Susitna Glacier
and Totschunda faults, we model the rupture process on only
one straight fault segment. The dynamic inverse problem
pushes the limits of current computational capabilities
(Peyrat and Olsen, 2004), so we use trial-and-error forward
modeling. For simplicity, and to demonstrate that a super-
shear transition is the only feature required to match the
ground motion, we assume that all material and frictional
properties are uniform with depth.

We use a simple friction law that exhibits both slip-
weakening and healing behaviors. The two-parameter law
requires that a slip-weakening distance D and healing time
T be specified at each point on the fault. We define the non-
dimensionalized stress as 0 = (o,, — g)/(g, — o), where
g, and g, are the yield stress and sliding friction. The stress
evolves following

R )
D T

once the fault begins to slip. Slip velocity is defined as
ov =v(y =0") — v(y = 07) and reverse slip is forbid-
den. This friction law was introduced by Nielsen and Carlson
(2000) and provides a convenient way to include healing.
For T — o, it reduces to an exponential slip-weakening law.
Note that the slip-weakening distance D for this model is
twice that used in the standard linear slip-weakening model
(Andrews, 1976) having the same fracture energy.

We artificially nucleate the rupture by slightly over-
stressing a region 61 km from the station, chosen to match
the distance to the intersection of the Susitna Glacier and
Denali faults. As several models have suggested (Harris et
al., 1991; Harris and Day, 1993; Kase and Kuge, 1998; Mag-
istrale and Day, 1999; Anderson et al., 2003), ruptures jump
between faults almost exclusively when the initial rupture
reaches the edge of the original fault. Dynamic modeling of
the transfer from the Susitna Glacier to Denali fault by Aa-
gaard et al. (2004) suggests that this occurs about 10 sec
after initiation. The arrival time of pulses A and B then
places a lower bound on the average rupture velocity from
the intersection of the faults to PS10 of 0.75¢,, neglecting
any time spent during nucleation on the Denali fault. As-
suming that pulses A and B are associated with a supershear
rupture (propagating at about 1.5¢;) and pulse C with a Ray-
leigh wave, then the separation in time between these pulses
requires the supershear transition to have occurred about 30
km before PS10. Combined with the assumption that slip
transfers from the Susitna Glacier fault to the Denali fault
about 10 sec after nucleation (Aagaard et al., 2004), we es-
timate an initial sub-Rayleigh rupture speed of about 0.5—
0.6¢,. In our models, the rupture begins bilaterally on the
Denali fault, but we introduce a barrier 10 km to the west,
consistent with surface-slip measurements (Eberhart-Phillips
et al., 2003), that arrests propagation in that direction. The
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initial stress level is selected such that the rupture is sub-
Rayleigh, and no healing is used initially.

We distinguish between two types of supershear tran-
sitions observed in our simulations. In the first, the S-wave
stress peak that triggers the transition is released during nu-
cleation (as in Andrews [1976]). Even for a properly re-
solved nucleation process with the slip-weakening laws
used, an overestimate of the critical crack length (due to
using an inappropriately large value of the slip-weakening
distance) will result in a physically premature transition. If
ruptures nucleate from much smaller patches and the slip-
weakening distance that governs fully dynamic propagation
is much larger than that governing nucleation (as experi-
mental and numerical work indicates), then numerical results
exhibiting this type of transition are incorrect. Instead, a
preferable type of transition would be one in which nucle-
ation generates a negligible shear-diffraction peak and some
other process, such as growth into a region of increased
stress drop (Fukuyama and Olsen, 2002) or focusing by rup-
ture front curvature (Dunham et al., 2003), builds the peak
to a critical level. To ensure this, we trigger the supershear
transition by increasing the initial stress level in an asperity
beginning about 30 km from the hypocenter (see Fig. 6) and
make sure that diffractions from the nucleation process have
negligible influence on rupture growth.

The short rise times at PS10 are inconsistent with a tra-
ditional crack model, indicating that the actively slipping
region is quite narrow, as appears to be typical in the earth
(AKki, 1968; Archuleta and Day, 1980; Heaton, 1990). Sev-
eral mechanisms are known to generate rupture pulses,
which are recognized as an alternative and equally valid so-
lution to the elastodynamic equation (Freund, 1979; Bro-
berg, 1999; Nielsen and Madariaga, 2004). Strong slip rate

Initial Stress
i
o -

0 1 1 1 1 1
0 20 40 60 80 100

Distance Along Strike (km)

Figure 6.  Model fault geometry and initial stress
conditions (the solid line corresponds to model I; see
Table 1 for the parameters of the other models) used
in the spontaneous rupture calculations. PS10 is
marked with a triangle. Hypothetical stations spaced
every 2.5 km between 20 km and 80 km, where we
also compute ground motions, are denoted by small
circles. L, denotes the distance to the asperity, ap-
proximately 30 km. The initial stress profile marked
by the dashed line shows the minimum width of the
asperity required by the record of PS10, as discussed
at the end of the text.
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weakening is one possibility (Cochard and Madariaga, 1994;
Madariaga and Cochard, 1994; Perrin et al., 1995; Zheng
and Rice, 1998). A friction law containing restrengthening
on a short timescale can also generate rupture pulses (Niel-
sen and Carlson, 2000). Rupture pulses also result from in-
teraction with geometrical heterogeneities, such as strength
heterogeneities or fault borders that transmit arrest phases to
initiate healing (Archuleta and Day, 1980; Day, 1982; John-
son, 1990; Beroza and Mikumo, 1996).

We present three models. The first (I) allows slip to
10 km depth and lacks healing. With these constraints, we
were unable to match the short rise time on the FP compo-
nent. Decreasing the slip-weakening distance does not alter
the FP rise time, and actually makes FN pulse B too narrow.
Instead, we tried two approaches to decrease the rise time.
Our second model (IT) allows slip to 10 km depth but adds
a healing time of the order of 1 sec (only within the asperity
region). In these first two models, a healing front emanates
from the western side of the Denali fault when the rupture
arrests there, creating a rupture pulse about 16 km wide. The
pulse width remains constant until the rupture encounters the
region of high prestress, where the supershear transition be-
gins. The third model (IIT) lacks healing, but restricts slip to
5 km depth. In this case, the rupture pulse width is about 8
km and is controlled by the fault width rather than by the
stopping phase from the western end of the fault. The model
parameters and fault geometry are summarized in Table 1
and Figure 6. Snapshots of the rupture history of our models
are shown in Figure 7. (® See also Movies 1 through 3
online at the SSA Web site.) Figure 8 compares our syn-
thetics to the corrected data. We allow a linear shift in time
because the nucleation process is artificial. We scale the am-
plitude of our synthetics to match pulse A identically; this
sets the magnitude of the stress drop , — o, (Table 1).

Let us begin with model I. When the rupture enters the
region of increased prestress, the transient diffractions ap-
pear and accelerate the rupture from 0.65¢, to 1.6¢,. It con-
tinues at the supershear velocity as it passes the station. The
supershear rupture takes the form of a pulse of expanding
width, with the healing front trailing at the S-wave speed.
The fault is locked after this healing front until the Rayleigh
arrival, in accordance with the elastodynamic considerations
discussed previously. This corresponds to the forbidden ve-
locity region that occurs when the slip direction attempts to
reverse itself. Our theoretical model also predicts a Rayleigh
wave behind the supershear front, which manifests itself here
as a secondary slip pulse. This model gives too large of a
rise time on FP to be consistent with the data. In contrast,
we find the width of FN pulses B and C to be far less sen-
sitive to the slip duration. However, the dip in amplitude
between these pulses is controlled by the slip duration, and
the strong dip seen in the data suggests that the fault has
negligible slip between the supershear rupture front and the
secondary Rayleigh rupture pulse.

There are several features that are not predicted by the
two-dimensional theoretical model, which neglects both the
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Table 1

Parameters for Our Three Models
Parameter Model I Model 1T Model 11T
u 32.4 GPa
C, 3.4 km/sec
C, 5.89 km/sec
Grid spacing 125 m
Time step 4.09 msec
Distance to station 61 km
Distance to asperity L, 24.375 km 27.375 km 28.75 km
Fault width 10 km 10 km 5 km
0 (outside asperity) 0.45 0.45 0.7
6 (within asperity) 0.7 0.77 0.87
g, — oy 28.4 MPa 40.0 MPa 31.5 MPa
D 143 m 2.0l m 1.58 m
T o 1.47 sec ®

finite width of the fault and the free surface. The propensity
of ruptures near the free surface to become supershear has
been noted by several researchers (H. Aochi, personal
comm., 2002; Gonzalez, 2003), and is related to phase con-
version at the free surface. This phenomenon in which the
supershear rupture front emerges at the free surface and
spreads laterally down the rupture front can be seen in Fig-
ure 7 (® and in Movies 1-3, available online at the SSA
Web site). Note also the change in the slip-velocity pattern
across a line extending back from where the rupture front
meets the free surface, as well as where it intersects the bot-
tom edge of the fault (particularly evident in the last several
snapshots). The angle that this line makes with the horizontal
is the S-wave Mach angle, indicating that behind this wave-
front, S waves converted by the free surface cause increased
slip velocity.

In model II, we add frictional healing to decrease the
rupture pulse width. In this case, the healing front follows
at approximately the same speed as the supershear rupture
front. To match the short rise time of pulse A requires a
healing time T of the order of 1 sec (Table 1). This generates
a complicated stress history on the fault because there is an
additional stress drop associated with the secondary slip
pulse. Healing raises the stress levels such that a sufficiently
large perturbation (provided by the Rayleigh wave) desta-
bilizes the frictional sliding to generate a secondary rupture.
This does not occur in the previous model, where the sec-
ondary slip pulse is closer to a true Rayleigh wave that prop-
agates without altering the fault tractions. However, the heal-
ing is too strong for the secondary pulse to persist, and it
dies out after propagating about 30 km.

This healing time does not necessarily imply a rapid
restrengthening, but it may be interpreted as evidence of a
characteristic time arising from some unmodeled source pro-
cess that locks the fault. Such a value could be related to a
smaller length scale characterizing strength or stress hetero-
geneities, which has been shown to control the rupture pulse
width (Beroza and Mikumo, 1996). We test this hypothesis
in model III, which introduces the smaller length scale sim-
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ply by limiting slip to 5 km depth. This achieves a compa-
rably short rise time without the use of healing. In this case,
the rupture pulse width is controlled by the fault depth, as
in Day (1982). The healing front moves at the same speed
as the supershear rupture front.

The amplitude and duration of pulses A, B, and C are
well matched for models II and III. The simplicity of our
models allows us to explain the relationship between fault
processes and the ground-motion pulses. We show the evo-
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Figure 7. Snapshots of the fault surface with the
color scale measuring slip velocity for the following:
(a) model I (no healing, slip to 10 km depth, shown
every 1.83 sec), (b) model II (including healing, slip
to 10 km depth, shown every 1.83 sec), and (c) model
IIT (no healing, slip to 5 km depth, shown every 1.65
sec). Time advances from bottom to top. The solid
white lines show wave speeds (Rayleigh, S, and P
from bottom to top). The dashed white line marks the
position of the station.

lution of FP and FN ground motions for model III as the
rupture transitions to supershear velocities in Figure 9, and
for all models in Movies 4-9 (® available online at the SSA
Web site). We also present seismograms for this model at
hypothetical stations before and after PS10 in Figure 10,
which highlight the fact that the PS10 record exhibits char-
acteristics of both supershear and sub-Rayleigh ruptures.
Before encountering the high-stress region, the radiation
pattern is characteristic of steady-state sub-Rayleigh ruptures
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in that FN dominates FP in amplitude. The FP radiation pat-
tern is characterized by four lobes (nodal on the fault plane)
that give rise to two one-sided pulses recorded at a fixed
receiver. The pattern is effectively that of a dislocation
source. On the right-moving block, the FN motion preceding
the rupture is away from the fault and that trailing the rupture
is in toward the fault. This results in the typical two-sided
FN pulse. These characteristic motions are discussed by Ar-
chuleta and Hartzell (1981) and Hall ef al. (1995) and were
observed, for example, in the 1966 Parkfield earthquake
(Aki, 1968). As the rupture pulse length increases (approach-
ing a crack model), the two trailing lobes on FP coalesce into
a large tail. In addition, the downward FN motion arrives
later and diminishes in amplitude. The downward motion is
thus directly associated with the passage of the healing front.

Evidence of the supershear transition on the FP com-
ponent comes as the rupture begins to outrun the S waves,
which ultimately lie behind a planar wavefront emanating
from the rupture front in a Mach cone. Arrival of this wave-
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Figure 8. Comparison between recorded and syn-
thetic ground motions at PS10 for the following: (a)
model I (no healing, slip to 10 km depth), (b) model
II (including healing, slip to 10 km depth), and (c)
model III (no healing, slip to 5 km depth).

front gives rise to the large one-sided pulse (A). The ampli-
tude of this feature increases as the supershear rupture de-
velops, until its amplitude dominates the FP motions (see
Fig. 10). In addition to the planar shear wavefront, the fully
developed supershear rupture possesses a two-lobed pattern
preceding the main shear wavefronts that must arise from
P waves. The lack of a preliminary bump preceding pulse
A indicates that the rupture was not in steady-state condi-
tions as it passed the station. The small rise and plateau
before pulse A arrives much too early to be an indication of
this feature. The trailing Rayleigh wave has negligible sig-
nature in the FP ground motion.

The pattern of FN ground motion associated with the
supershear transition is more complex. A pair of one-sided
pulses, with motion away from the fault on the right-moving
block, begin to emanate from the supershear rupture front
along the planar S wavefronts. These grow in amplitude as
steady-state supershear conditions are reached and corre-
spond to pulse B. Note that the motion actually peaks
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Figure 9.  Snapshots of of the free surface showing fault parallel (a) and fault normal

(b) ground motion every 1.28 sec from left to right for model III, on an area extending
12.5 km to either side of the fault. Other models produce similar ground motion. The
color scale, which changes for each snapshot, measures FP or FN velocity. Although
the FP motion is antisymmetric across the fault, it is plotted as symmetric for visuali-
zation purposes. The location of PS10 is marked by the white triangle.

slightly before FP pulse A, consistent with the observations.
This is because the motion actually preceeds the Mach cone.
This motion decreases to a minimum between pulses B and
C. Pulse C corresponds to the Rayleigh wave and is similar
in characteristic to a typical subshear rupture. The dip be-
tween these peaks likely indicates that the fault has no sig-
nificant slip between the supershear rupture front and the
Rayleigh wave. The amplitude of the trailing Rayleigh wave
is particularly sensitive to the frictional evolution of the
fault. If accompanied by too large of a stress drop (as could
occur if the fault rapidly restrengthens), the Rayleigh wave
develops into a strong secondary rupture, accompanied by
an amplitude increase in these later motions. Also, if the
triggering prestress is too large, the majority of the energy
goes into supershear motions at the expense of the Rayleigh
pulse. This places a strong constraint on the triggering pres-
tress in our models, and we find it to be just barely above
the minimum required to initiate the supershear transition.

We did not find it possible to exactly fit the negative FN
pulse D. A similar negative motion appears after the passage
of a dislocation and is associated with the healing front in a
rupture pulse model. An examination of the rupture histories
shows that our models exhibit an extremely narrow Rayleigh
rupture pulse that causes the negative FN pulse to arrive
immediately after pulse C. We speculate that pulse D cor-
responds to the passage of a healing front associated with a
Rayleigh pulse roughly twice as wide as observed in our
models. In our models, the Rayleigh wave is likely to be
narrow because finite difference methods have difficultly re-
solving surface waves. Furthermore, broadening of the Ray-
leigh wave could also occur because of frictional dispersion,
as is characteristic of any friction law possessing intrinsic
time or length scales. Further work is needed to test this
hypothesis, but if true, then this record could provide valu-
able constraints on the frictional properties of slipping
faults.
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Figure 10. Particle velocities for model III re-

corded at a number of hypothetical stations every 2.5
km from 20 km to 80 km along a line parallel to and
3 km off the Denali fault, as shown in Figure 6. Ad-
jacent traces are offset by 1 m/sec with the record
corresponding to the station at 60 km centered about
zero.

Discussion

We have analyzed strong ground-motion recordings
from the 2002 Denali fault earthquake and conclude that
they provide evidence of supershear rupture propagation
past PS10. A study of the waves generated within the stress
breakdown zone behind the rupture front sheds light on how
the forces that drive supershear propagation are transmitted
to the unbroken region ahead of the rupture front. As noted
by Ellsworth et al. (2004), a supershear rupture leads to large
amplitudes on both the FP and FN components of motion.
Rupture growth into a region of increased stress drop trig-
gers a set of transient diffractions that accelerate the rupture
from sub-Rayleigh to supershear velocities. This process is
accompanied by the release of a Rayleigh wave on the fault
surface. This appears as a secondary slip pulse that manifests
itself primarily in FN ground motion, explaining late-
arriving FN pulses recorded at PS10 that are not explained
in supershear kinematic models. The separation in time of
these FN pulses indicates that the supershear transition oc-
curred about 30 km before PS10.

Although our models show persistent supershear rup-
ture well after PS10, this is not required by the records of
PS10 and occurs only because the high prestress level used
to trigger supershear growth is maintained thereafter. To
place a lower bound on the supershear propagation distance
required to match the PS10 record, we limited the width of
the high-stress region (Fig. 6). We found that a minimum
width of about 35 km is required to match the records. In
this case, the supershear rupture is transient. It persists be-
yond the high-stress region and dies out about 30 km past
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PS10. When the secondary Rayleigh rupture pulse encoun-
ters this region, it resumes its role as the only rupture front.

The narrow width of pulse A and the strong dip in am-
plitude between pulses B and C are incompatible with a tra-
ditional crack model, indicating that the supershear rupture
took the form of a narrow slip pulse. The same cannot be
concluded for the secondary Rayleigh rupture pulse, which
we speculate was about twice as broad as the pulse observed
in our simulations. Our dynamic models demonstrate that a
narrow supershear pulse could arise either from frictional
healing over a timescale of 1.5 sec or from the presence of
a 5-km length scale characterizing the stress distribution.
Although the rupture histories of these models differ (Fig.
7, and Movies 1-3 [(® available online at the SSA Web
site]), the resulting ground motion at PS10 is nearly identical
(Fig. 8). In light of this, we emphasize that our models
should not be interpreted as providing an exact slip history
of the fault, which cannot be determined uniquely from one
record. Instead, our models contain only the minimum num-
ber of parameters required to explain the main features of
the record.

The multiple slip pulses that we observe in our dynamic
models highlight the difficulty kinematic models may have
when fitting or inverting data that result from supershear
ruptures, in particular, if supershear growth occurs in tran-
sient bursts. Dynamical inversion efforts like those by Peyrat
and Olsen (2004), although presently extremely expensive
computationally, are a possible future solution.
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