Appendix 2

Key Formulas in Earthquake

Seismology

Introduction

The material below contains selective key formulas for different
branches of earthquake seismology, with an emphasis on source
processes, accompanied by brief explanations. The goal is to
provide a concise collection of useful expressions in one place
without elaborate background information and details. The for-
mulas are organized in seven brief sections: 1. Thermodynamics
and elastodynamics; 2. Seismic source and representation inte-
grals; 3. Elastodynamic waves; 4. Fracture; 5. Friction; 6. Earth-
quake source parameters and scaling relations; and 7. Seismic-
ity patterns. The choice and ordering of material is to some
extent a matter of taste (and of course knowledge). Most for-
mulas are followed only by definitions and basic clarifications,
but in some places there is also a brief discussion of proper-
ties and implications of results. Further details on the different
subjects, and many additional important formulas, can be found
in the references given by numbers in the parentheses after the
title of each section. Since most expressions are well-known,
explicit references are usually not provided for each separate
result; however, in some cases this is done for easy identifica-
tion of sources. An excellent general reference for the material
of sections 1, 2, 3, and 6 is the book Quantitative Seismology
by Aki and Richards [1]. Good general references for sections
4 and 5 in relation to earthquakes are Rice [42] and Scholz [50].
Useful general references for section 6 are Brune and Thatcher
[8] and Kanamori [25]. A good general reference for section 7 is
Utsu [59].

The following notations are adopted throughout. Variables
and parameters are written in italics (e.g., x), vectors are de-
noted with boldface (e.g., x), and unit vectors are marked with
the circumflex symbol (e.g., 72). Cartesian components of vec-
tors and tensors are denoted with subscripts (e.g., X;, ¢;jx). The
summation convention for repeating subscripts is used (e.g.,
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Cijki€rl = > k.1 CijklEKL)- Overdots indicate time derivatives (e.g.,
il; = 8%u;/9t?), and a comma after a subscript implies a spatial
derivative (e.g., 0;,; = > ; 0;;/9x;). Additional notations are
defined where needed.

1. Thermodynamics and
Elastodynamics (1. [37], [43], [55], [57)

The first law of thermodynamics implies that the energy balance
during evolving deformation can be expressed as
d2/dt +dQ/dt =d(K + U)/dt (1.1)
where 2, O, K, and U are, respectively, mechanical work, heat,
kinetic energy, and internal energy, all per unit mass or vol-
ume. The internal energy is an intrinsic potential such as gravity,
magnetic field, and elastic strain energy. If the internal energy
is known as a function of strain ¢ and entropy S, it forms a
complete equation of state, and all other equilibrium properties
of a deforming system, such as specific heat and stress—strain
relation, can be obtained from it by differentiation. For some
applications, it is preferable to use the strain and temperature T
as independent variables. In that case, the complete equation of
state is given by the Helmholtz free energy F defined as
F=U-TS (1.2)

where F, U, and S are per unit mass or volume.
The second law of thermodynamics requires that the entropy
production rate during any process in a closed system be non-

negative

d§> 0 (1.3)
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FIGURE 1 The stress tensor in a general coordinate system having nine shear and normal components (left) and the principal coordinate

system having only three normal components (right).

with the equality characterizing reversible processes (e.g., purely
elastic deformation) and the *“>" sign characterizing irreversible
ones (e.g., fracture and friction).

The stress tensor o;; and moduli tensor ¢;ji; of elastic defor-
mation can be obtained from the strain energy density function
W and strain tensor g;; by the following derivatives

Ojj = p/BW/Be,-j (1421)

and

Cijuu = 0°W/de;jden (1.4b)

where p’ is mass density if W is energy density per unit mass or
1 if it is energy density per unit volume. For deformation under
adiabatic conditions, the appropriate choice for W is U, while
for isothermal deformation it is F.

The stress—strain relation of a linear elastic solid is

Ojj = Cijki€kl- (1.40)

The stress, strain, and elastic moduli tensors have the following
symmetry properties

Oij = 0ji,
Eij =8j,‘, (14d)
Cijki = Cjiki = Cijik = Cklij-

With the above definitions and properties, the strain energy den-

sity per unit volume of a linear elastic solid is

W= Ecijklgijgkl = 50,']'8,‘]‘. (146)

Since the stress and strain tensors are symmetric and real-
valued, they can always be diagonalized by transformation
(Fig. 1) to a coordinate system consisting of three orthogonal
directions (called the principal axes) normal to planes subjected
only to normal stress and strain components (called the principal
stress and strain values).

The stress—strain relation for a linear isotropic elastic solid is

Ojj = )\,5,']'8/(/( + ZMSU (15)
where A and p are the Lamé constants and §;; is the Kronecker
delta function. The Lamé constants and bulk modulus K can be
written in terms of Young modulus E and Poisson ratio v as

w=E/[2(1 +v)],
A =vE/[(1+v)1 —2v)],
K = E/[3(1 —2v)] = A + 2u/3.

(1.6)

For a uniaxial linear elastic deformation of homogeneous iso-
tropic bar under tensile stress o1, the axial strain components
are 11 = o11/E, €20 = €33 = —veq; and the shear strain com-
ponents are zero. During infinitesimal deformation of homo-
geneous isotropic elastic solid under pressure — p, the normal
stress components are o] = 0, = 033 = — p and the fractional
reduction of volume is AV /V = (g;; + e»n + €33) = —p/K.

The Cauchy equation of motion for a continuum in terms of
stress and displacement u is

0ij.j + fi = pii; (1.7)

where f; is the i component of body force per unit volume.
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Putting (1.5) into (1.7), and using the definition of infinitesi-
mal strain in terms of displacement gradients &;; = %(u i,
gives the Navier equation of motion for a linear homogeneous
isotropic elastic solid in terms of infinitesimal displacement

A+ g i + puie + fi = pid;. (1.8)
Equation (1.8) has solutions in a homogeneous medium in terms
of two types of plane body waves u(x,t) = pu(in - x — ct),
consisting of an arbitrary pulse shape u propagating in direc-
tion 71 with velocity ¢ and particle motion polarization p. One
solution has velocity and polarization

c=vp=+A+2u)/p ad pxa=0 (1.9a)
and the other
c=vs=+/u/p and p-a=0. (1.9b)

Solutions (1.9a) and (1.9b) describe longitudinal dilatational P
waves and transverse shear S waves, respectively. More general
wavefields can be represented as superpositions of plane waves
(see section 3).

The strain energy density per unit volume of a plane S or P
wave in a linear isotropic elastic solid is

1 1,
W= _Uijgij = —pu = K

5 5 (1.9¢)

where K is the kinetic energy density per unit volume. The flux
rate of energy transmission (i.e., energy per unit time across a
unit area normal to the propagation direction) associated with
a plane wave of elastic disturbance is vgpu? for S waves and
vppu? for P waves.

The displacement field generated by a distribution of body
forces and surface tractions can be synthesized using the elasto-
dynamic Green function G;;(x, t; x’, t'), giving the i component
of displacement at (x, ¢) due to a localized unit body force op-
erating at (x', t') in the j direction. The elastodynamic Green
function satisfies the Navier equation of motion for a linear elas-
tic solid

02 d ad
— G =8;;6(x — x)8(t —t") + — (Cintu— G 1.10
P Gii = 83 = X008 =)+ 5 =(eima 3 =Giy) (110)
where §( ) is the Dirac delta function. A complete determination
of G;; requires meeting initial conditions (taken usually to be
G =030G/dt =0fort <t and x # x’) and specified boundary
conditions on the surface of the medium.

If G;; satisfies homogeneous boundary conditions (i.e., zero
traction or zero displacement) on S, it has the following spa-
tiotemporal reciprocity properties

Gij(x,t; x',t") = Gj;(x', —t'; x, —1). (1.11)
The displacement field in a solid with volume V and surface S
subjected to body force f and surface traction T can be written
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using a Green function response that satisfies stress-free bound-
ary conditions on S as

t
ui(x, 1) = /dﬂ/ Gij(x,t; X, 1) fi(x, 1) d*X
—00 \%4
t

+ /dt’/Gij(x, t; X, ) Ti(x', t)d* . (1.12)

—00 S

2. Seismic Source and

Representation Integrals
(11, 131, (41, [12], [21], [28], [34], [42], [57])

The total strain at (x, #) may be written as a sum of elastic and
inelastic contributions (Fig. 2). The inelastic strain tensor in the
faulting region, also called transformational strain, defines the
seismic potency density tensor per unit volume,

85 (x,t) = seismic potency density tensor.  (2.1a)

The corresponding transformational stress, also called stress
glut, defines the seismic moment density tensor per unit volume,

P _
Cijki(X)e(x, 1) = m;j(x, 1)

= seismic moment density tensor. (2.1b)

Relation (2.1b) assumes that the tensor of elastic moduli is time-
invariant. Since this does not hold during faulting, c;;; should
be interpreted as a tensor of “effective” elastic constants with
actual employed values depending on the application. If /) is
identified as the tensor of elastic strain drop during faulting, m;;
may be interpreted as the corresponding stress drop tensor Ao;;,

c
A

brittle
failure

>

— et —— ¢ 81’3
€ e?——¢€7+ eT = gE 4 gP
FIGURE 2 A schematic 1-D stress—strain diagram for large defor-
mation with total strain £T having elastic £ and inelastic &” contribu-
tions.
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and ¢;;i; as effective elastic constants relating the elastic strain
drop tensor to the stress drop tensor.
The seismic potency tensor is

P(1) = / el dV (2.2)

14

where the integral covers the inelastically deforming volume
in the earthquake source region. Similarly, the seismic moment
tensor is

M,‘j(l‘) = /Cijkl 815 dv = / A(T,‘j dv. (2.2b)
Vv Vv

For a displacement discontinuity Au across a surface S with a
unit normal 72

1
Py = / (Auinj + Aujn;) dS
N

(2.3a)

and

M,'j(l‘) = /ci‘,-klAuknl das. (2.3b)
S

For isotropic material

M,‘j([) = [ [A(SijAuknk + /,L(Alxtji’ll' + Auinj)] das. (23C)
N

The scalar seismic potency of shear faulting on a planar sur-
face is the integral of slip over the rupture area or, equivalently,
the product of the spatial average of the final slip distribution
and the failure area A

Py = (Au) A. (2.4a)
The corresponding scalar seismic moment is
My=uPy=pu(Au) A (2.4b)

with ¢ being an effective rigidity in the source area.
The displacement field at (x, ¢) due to a distribution of m
(= ¢pgjxngAup) along an internal surface § is

t
ui(x,t) = /dt’/c,,qjk(x/)nq(x')Au,,(x/,t/)
—00 N

x [0Gij(x, t;x', 1) /dx;] d*x'. (2.52)

The displacement field at (x, ) due to a distribution of dis-
placement discontinuities along an internal surface S can be
written as

t
wi(x, 1) = / dt’ / Au;(x',t)Bij(x, t;x, ', 7) d*x’ (2.5b)

—00 S
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where B;; gives the i component of displacement at (x, ) due
to a unit point dislocation in the j direction at (x', ¢’) across a
surface S with a unit normal 72(x’). The situation &; - 2 = 0 with
¢; being a unit vector in the j direction corresponds to a shear
crack, while &; x i = 0 represents a tensile crack. For shear
faulting in isotropic material

Bij(x,t;x', 1", ) = mu[dGij(x, 15x', 1) /9x;

+ 3G (x, 1;x, t/)/Bx}]. (2.5¢)

For 2-D static crack problems, the stress drop and spatial
derivative of slip are proportional to the Hilbert transforms of
each other. For example, the stress drop sustained by a crack on
the plane x, = 0 in a region [—L, L] along the x; axis due to a
slip distribution in that region is

"
Acyj(x1, Xy =0) = ———
02j(x1, X2 ) 27(1 —v)
L
y fd[Auj(X{) — v8j3A/u3(x{)]/dxi dx!
X1 — X
—L

(2.6)

where j = 1 and 3 correspond to in-plane and antiplane shear,
respectively, and j = 2 corresponds to opening motion. Rela-
tion (2.6) stems from the fact that a line dislocation at x; = x{
produces stresses that decay with distance r from the source like
1/r.

3. Elastodynamic Waves
(11, 1101, [12], [30], [33], [42], [49], [51], [57], [61], [64])

As mentioned in section 1, the Navier equation of motion for a
linear elastic solid has solutions in terms of P and S plane body
waves and elastodynamic Green functions. Stress-free surfaces,
interfaces separating solids with different elastic properties, and
other heterogeneities produce reflected/transmitted/converted
waves and additional seismic phases. A solid with a free sur-
face, taken to be horizontal, is referred to as a half space. Shear
waves with horizontal polarization in an isotropic half space
or horizontally layered structures, called SH waves, excite on
horizontal planes a single stress component (e.g., o, for a co-
ordinate system with z normal to horizontal planes and y in
the polarization direction). Corresponding S waves with verti-
cal polarization, called SV waves, excite on horizontal planes the
other two components of stress (e.g., 0, and o;). Incident SH
waves produce upon interaction with horizontal interfaces only
SH reflected/transmitted waves, while SV (and also P) waves
interacting with horizontal interfaces produce in general both
SV and P reflected/transmitted waves.
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Rayleigh waves consist of combined P and SV elastic distur-
bances propagating along a free surface of elastic solid. For a
Poissonian half space, having A = p and v = 0.25, the Rayleigh
wave velocity is vg ~ 0.92vg. In a half space with increasing
vg and vp with depth, or a corresponding spherical situation,
Rayleigh waves are dispersive. In such cases, the longer wave-
length components are affected by deeper structure and, hence,
propagate faster. Love waves are dispersive SH waves that travel,
again with faster propagation for longer wavelength compo-
nents, within a horizontal surface layer or the top section of
a half space having increasing vg with depth (or corresponding
situations with spherical geometry). Stoneley waves are com-
bined P and SV disturbances propagating along an interface
between pairs of solids with elastic properties in a certain range
or between a solid and a fluid.

Plane waves form a complete set of basis functions and, hence,
can be used to represent any wavefield. In practice, they are
useful in problems with geometrical elements that are natu-
rally characterized by a Cartesian geometry (e.g., planar sur-
faces on which boundary conditions should be satisfied), and
in high-frequency seismology with propagation distance much
larger than the wavelength. Other complete sets of basis func-
tions that are commonly used in wave propagation seismology
are Bessel/Hankel functions and spherical harmonics. Bessel
and Hankel functions are useful in problems with elements that
have a cylindrical or spherical geometry (e.g., 2-D problems
with a line source, 3-D problems with a point source, tunnel or
borehole in a 3-D solid). Spherical harmonics provide a natu-
ral representation for the angular dependency of normal modes
(free oscillations) of the Earth and are useful in other problems
of low-frequency seismology (e.g., surface waves). The radial
dependency of normal modes is described by spherical Bessel
functions. In a spherically symmetric solid, there are two dis-
tinct types of normal modes, toroidal and spheroidal. Toroidal
modes are analogous to SH and Love waves and are associated
only with an angular motion. Spheroidal modes are analogous
to P/SV and Rayleigh waves and are associated with both radial
and angular motion.

The elastodynamic Green function in an unbounded homoge-
neous isotropic solid has P and S wave components

Gij(x,x',1) = Gi}; + G,-Sj (3.1a)
where
G/ = —(9°/9x;0x;) h(r,t;vp) (3.1b)
and
G}, = —(8;; V> — 9%/dx;9x;) h(r, t; vs) (3.1c)
with (Fig. 3)
1
h(r,t;c) = ——@ —r/c) H(t — r/c). (3.1d)
4mpr
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FIGURE 3 The function A(r, t; ¢) at space-time distances (r, ¢) from
a source in a solid with wave velocity c.

In (3.1b)—(3.1d), the source operates at zero time, r is the source-
receiver distance, vp and vg are P and S wave velocities, and
H is the Heaviside unit step function.

The elastodynamic Green functions for 2- and 3-D homoge-
neous isotropic solids can be written in the frequency domain
[61] as

Gij(x,x', w) = 1 {5ijk§8(ksr)

7T pWw?
d 0
8)6,' ij

[g(kpr) — g(ksr)]} (3.2)

where w is angular frequency, ks = w/vs, kp = w/vp, glkr) =
exp(—ikr)/r for a 3-D solid, and g(kr) = im Hy(kr) for a 2-D
case with Hj being the Hankel function of order zero.

The displacement field in an unbounded homogeneous iso-
tropic material generated by a distribution of m j; can be written
from (2.5) and (3.1) as

uix,t) =ul +u} (3.3a)
where
t
!5y = 0l [ [ bt = ivnns)
V —o0
xm (', 1) dt’ d*x' (3.3b)
with
O/ = 0°/0x;0x;0x; (3.3¢)
and
1
05 = E(aija/axk +8x9/3x;)V: — 3% /0x;0x;9x,.  (3.3d)
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The far-field approximation of (3.3a)—(3.3d), valid for r > a
and r > X with a and X being source dimension and wavelength
of interest, is

RPurS p " x/
ijk . 0 — Vit
ul.P‘”S(x, 1) = /—3 /mjk <x/’ f— 7l> d3xr
4npr0vP0rS v UPors

(3.4a)

where ry is a representative source-receiver distance, y; =
ar/dx; = x;/r are components of the unit vector in the source-
receiver direction, the integral term is referred to as source effect,
and the receiver plus radiation pattern functions R in front of the
integral are

RE =vivine (3.4b)

and

R = %(aijyk + 8ik¥i) = ViV Vi (3.4¢)
The y; terms in (3.4b) and (3.4¢) are associated with the variable
of interest at the receiver, while the other terms are associated
with radiation patterns for P and S waves.

For a unidirectional slip in the x| direction on a fault surface in
the x-x3 plane (Fig. 4), the corresponding far-field displacement
field is

PorS, 2

R; v
i12 S . / /
— Auy[xy, x3,t

ul”S(x, 1) =
27TrOUPorS S

+ (1x] + ¥3x5 — 10)/vpors] X', (3.52)

The factor 1/r in (3.4a) and (3.5a) accounts for the geometric
attenuation of body waves in the far-field. The ratio of the max-
imum amplitudes of far-field displacement S waves to P waves
is essentially v?, / vg, which is about 5 for a Poissonian solid. De-
noting the source effect (integral term) in (3.5a) by Q(x, ), the

X2
A
receiver
R /v ro
Y
slip patch
iy —_
- —
e Y P X1
-
-
X3

FIGURE 4 A coordinate system for analysis of far-field radiation at
receiver with distance ry and angle ¥ from a fault with unidirectional
slip Au = [Au;(xy, x3, 1), 0, 0].
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zero-frequency asymptote of the far-field displacement source
spectrum is

Q(x/,w=0)=/d2x//Au1dr
S —00

= / Aul(x/,t =T, d2 "= (Au)A = Py
S
(3.5b)

where 7, is the time at the completion of the dynamic slip process
(called the rise time), (Au) is the spatial average of slip over the
fault, A is the rupture area, and P, is the scalar seismic potency
(see section 2). The zero-frequency asymptote of the far-field
spectrum of any plausible description of the source process is
equal to the scalar seismic potency or moment divided by rigidity
(see, e.g., equation (3.8) and Fig. 7). Details of different source
processes are contained in the high-frequency portions of the
spectra.

The far-field condition» >> X isequivalent to a high-frequency
criterion |@| > vs,rp/r. Thus (3.4) and (3.5) do not represent
properly the low-frequency components of the fields radiated
from distributions of slip and moment density tensors. In partic-
ular, these results do not include the final static components of the
response. Equations (3.4) and (3.5) have approximate descrip-
tions of space-time variations of the source process (viewed from
a constant source-receiver angle and without terms that attenuate
faster than 1/r). In contrast, point-source and low-frequency ap-
proximations of the far-field radiation from a distribution of nz;
are associated with more limiting conditions at the source. The
point-source approximation is valid for A > a and r > A, and
the corresponding results do not include spatial variations at the
source. The low-frequency approximation is valid for |w|T, < 1
and r > A, and the corresponding results do not include space
or time variations of the source process.

The complete displacement field in an unbounded homoge-
neous isotropic material due to a spatially localized body force
with a source-time function F(z) is

r/vs
1 1
w0 = Gy = 8 / CFi(t — 1) dt

V'/Up

1 1
+ — iy —Fi(t—r/v
4npv%w,r 5( /vp)

1 1
= o Wivi = i) D Fj(t = r/vs). (3.6)

4 pvi
The first term with unseparated P and S waves decays with
distance like 1/r? for sources that are nonzero for times shorter
than the interval (r/vs — r/vp). Since this term is dominant for
very short source-receiver distances (r — 0), it is called the
near-field term. The second and third terms with separate P and
S wave contributions proportional to 1/r are dominant at large
distances (r — o0) and are called far-field terms.
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X3 A r
X2
slip patch
with area 4
iy >
- - "‘~:_: ------ X1

FIGURE 5 Cartesian and polar coordinate systems for analysis of
radiation by a slip patch with area A and average slip (Au(?)).

The corresponding displacement field generated by a time-
dependent scalar seismic moment My(z) = u (Au(t))A, associ-
ated with a shear dislocation (Fig. 5) parallel to a fault surface
with an area A, is

r/vs
1 1
ux,t) = m ANF / TMy(t — t)dt
r/vp

2

1
A’P—zMo(l —r/vp)
dmpvp r

1
— A My —r/v
Tept A Mot = r/vs)

1.
PR AFP;Mo(f —r/vp)
P

! Fsly
+—— AFS Mot —r/vs).  (3.7a)
r

47 pv}
The first term in (3.7a) with unseparated P and S waves
gives the near-field response, the second and third terms with
separate P- and S-wave contributions proportional to 1/r2 are
intermediate-field terms, and the fourth and fifth terms with sep-
arate P and S waves proportional to 1/7 are the far-field terms.
The functions A in front of each term are radiation patterns for
the various terms given by

AN = 95in 26 cos ¢pF — 6(cos 26 cos ¢9 — cos 8 sin qbqg),
AP = 45in 26 cos ¢ — 2(cos 26 cos ¢é — cos @ sin ¢<;ZA)),
A"S = —35in 26 cos ¢F + 3(cos 20 cos $pO — cos 6 sin pp),
AP = sin 20 cos ¢7,

AFS = cos 26 cos ¢é — cos 0 sin ¢¢3, (3.7b)
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where 7, é, and 43 are unit direction vectors in a polar coor-
dinate system for the source-receiver geometry (Fig. 5). The
far-field radiation patterns provide the basis for routine deriva-
tion of fault-plane solutions from observed spatial distributions
of first-motion polarities.

The largest amplitude arrivals at teleseismic distances are sur-
face Rayleigh and Love waves, which attenuate with distance
like »~'/? in contrast to the ! attenuation of body waves. For
this reason, surface waves are used extensively to derive infor-
mation from observed seismograms on low-frequency properties
of earthquake sources and the velocity structure of the crust and
upper mantle.

The far-field displacement amplitude spectrum from a uni-
directional rupture on a rectangular fault with length L, width
W < L, rupture velocity V, in the positive length direction, and
ramp source-time function with final slip D and rise time 7, is

1Q(x, w)| = WLD

sinX |1 — ¢/l
e (3.8)

X oT,

where X = (wL/2)[1/V, — (cos ¥)/vp,rs] and W is the an-
gle between the rupture direction and receiver. The function
sin X/ X, called the finiteness factor or directivity function, ac-
counts for the finite apparent rupture duration at different direc-
tions and produces oscillations withnodesat X = m,2m, ... The
term in the square bracket of X times L gives the apparent rup-
ture duration at receiver direction W (Fig. 6). The zero-frequency
asymptote of (3.8), WLD, is the scalar seismic potency (see
also (3.5b) and section 2), while at high frequencies (3.8) is a
decaying oscillatory function with a high-frequency asymptote
proportional to w2,

In general, the low-frequency asymptote of the far-field dis-
placement source spectrum, being independent of internal vari-
ations of the source process, is a stable constant value equal to
the scalar potency or moment divided by rigidity. In contrast,
the high-frequency spectral source behavior depends strongly
on model assumptions and parameters. Kinematic rupture mod-
els that start from a point and spread with a uniform velocity to
prescribed boundaries have far-field displacement spectra with
high-frequency asymptotes proportional to w~2—w~> for most
model assumptions and source-receiver directions (Fig. 7). The
frequency at the intersection of the low- and high-frequency
asymptotes is called the corner frequency w,. For source mod-
els with uniform rupture propagation over a continuous faultin a
full space, w, is inversely proportional to the rupture dimension.
However, the precise value of @, depends strongly on details of
the source process, source-receiver direction, and wave type (P
or S).

The attenuation of elastic strain energy during a stress cycle
with angular frequency w may be characterized in terms of a
quality factor Q(w) as

1 AE

Zizz;; = ——’53;—25 (3.5)3)
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FIGURE 6 A schematic representation of displacement pulses (¢) radiated at different directions from a propagating rupture. The areas
under the curves are the same, but the amplitudes and durations are different.

where E and A E are the peak and change of elastic strain energy
during the cycle. An effective way of incorporating attenuation
into solutions of elastic wave propagation problems, when Q is
approximately constant over a wide range of frequencies, is to
multiply the elastic body-wave velocities by the function

[1 4+ In(w/wo)/m Q —i/2Q] (3.9b)

where wy is a reference angular frequency (e.g., 27) for which
the body-wave phase velocities are known and i is the imaginary
unit.

The amplitude response |X(w)| and phase delay ¢(w) of a
pendulum seismometer with mass M, spring constant k, and
dashpot constant D are given by

w?

| X(w)| = (3.10a)
\/(wz — w§)2 + 4e20?
and
1 2ew
¢(w) = m — tan — (3.10b)
w?—w

s

where 2 = D/M, w; = (k/M)'/? and the dimensionless damp-
ing constant & /w; is equal to half the reciprocal of the Q value
of a damped oscillator.

4. Fracture (5] [7], [15], [17], [28], [29], [31],
[32], [42], [44], [46], [47], [50], [54])

Holes, notches, cracks, inclusions, and other flaws in solids am-
plify or concentrate stress near their boundaries. For example,
the tensile stress on the boundary of a circular hole around the
origin of the x;-x, plane with remote loading o* in the x, di-
rection is

099 = 0°(1 + 2 cos 20) 4.1)
where 6 = 0 on the positive x; axis. Equation (4.1) indicates a

stress concentration by a factor of 3 at the intersections of the
hole with the x; axis.
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FIGURE 7 A schematic representation of radiated far-field displace-
ment source spectrum with scalar seismic potency Py and corner fre-
quency o,.

The tensile stress at the x; intersections of an elliptical hole
(Fig. 8) around the origin of the x;-x, plane with major and
minor axes a and b under remote loading o* in the x, direction
is

oe(x1 = %a, x; = 0) = 6°(1 + 2a/b) = 0®(1 +2./a/p)
4.2)

where p = (b*/a) is the radius of curvature of the ellipse at
x1 = £a. The limit b — 0 corresponds to a flat Griffith crack.
In that limit, modeled as a sharp mathematical cut, the stress
concentration at x; = Fa becomes unbounded. This is a gen-
eral feature of all problems in Linear Elastic Fracture Mechanics
(LEFM), where the breakdown processes at the crack tips are
ignored. The region of validity of LEFM is at distances from the
crack tip (Fig. 9) larger than the inelastic process zone and much
smaller than any macroscopic dimension such as crack length or
distances from boundaries. Nonlinear fracture mechanics mod-
els incorporate constitutive laws for the inelastic deformation in
the process zone that eliminate the crack tip singularities (see,
e.g., Fig. 11 for slip-weakening friction behind the rupture front).

For a flat Griffith crack of length 2a on the x; axis under
remote tensile loading o ® in the x, direction, the tensile stress
along the x; axis and slip Au, are

on(lxil > a, x2 = 0) = 0% |xi| /y/x] — a? (4.3a)

and

Aur(|x)| < a) = (46®/E")\/a? — x} (4.3b)
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FIGURE 8 An elliptical hole with a radius of curvature p in a plate
under remote tensile loading ¢*°.

where E’ = E for plane stress and E' = E /(1 — v?) for plane
strain with £ and v being Young modulus and Poisson ratio, re-
spectively. The 1/./r and /7’ functional dependencies in (4.3a)
and (4.3b), with r and r’ denoting the distances from the crack tip
to points in the unbroken and broken material, respectively, are
common to all 2D, 3D, static, dynamic, isotropic, and anisotropic
problems in LEFM (Fig. 10).

A useful way of quantifying the strength of the singular crack
tip field in LEFM problems is through the limit

K = 1iII(1) [ov 2nr] “4.4)
where K is called the stress intensity factor.

The singular stress and displacement discontinuity fields along
dynamic planar cracks under general mixed loading have the fol-
lowing general forms

{022, 021, 023} = {K1, K, K} (4.5a)

1
N2mr
and

4(1 —v)

X \/;{Klfl, Ku fir, K fin/(1 — v)}.
(4.5b)
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FIGURE 9 A schematic diagram of a 2-D crack illustrating the region of validity of Linear Elastic Fracture Mechanics and modes I, II, and

III of rupture extending along the x; axis with velocity V.

The functions Kj are stress intensity factors for modes J =1,
II, and III. A pure mode I corresponds to an “opening” tensile
fracture with particle motion normal to the crack surface (Fig. 9).
A pure mode II corresponds to a “sliding” in-plane shear fracture
with particle motion in the crack plane and parallel to the direc-
tion of crack extension. A pure mode III corresponds to a “tear”
antiplane shear fracture with particle motion in the crack plane
and normal to the direction of crack extension (Fig. 10). For
cracks that grow from an initial “nucleation” size with continu-
ing slip behind the propagating front, the functions Kj decrease
monotonically with the crack speed to zero: K1(V, — vg) — 0,
Ku(Vr g UR) =g O, Klll(Vr —> vs) — 0 with UR and Vs being
the Rayleigh and shear wave speeds, respectively. For cracks ex-
panding from the origin at a uniform speed V,, Ky « AO’J\/W
where Aoy = 0f° — of’“k are stress drop components associated
with the different modes. A static crack of length 2a in an infi-
nite plate has K; = o7°/ma. The functions fjin (4.5b) increase
monotonically with the crack speed such that fj(V, = 0) = 1
for all modes, and fi(V, — vg) — oo, fu(V, — vg) — o0,
Jm(V, — vs) — oo. The products Kjfj governing the am-
plitudes of the displacement discontinuity fields remain finite.
Explicitly,

=V Ve ey @so)
=, =, = o .DC
Ta—veir T a—veir s

where ap = /1 —V2/v3, a5 = /1 —V?2/v}, and R =

4apos — (1 + 03)>. The Rayleigh function R vanishes when
Vr = VR.

Shear fracture in mode II on a frictional interface can prop-
agate at intersonic velocities [46] larger than the above speed
limits for singular cracks (vg for modes I and II; vg for mode
IIT) and smaller than the dilatational wave speed vp. The sin-
gular solution, not just along a planar extension of the crack as
in (4.5a) and (4.5b) but for all positions, includes an angular
component that depends on V,.. The full singular solution pre-
dicts, for a homogeneous solid, rotations of maximum failure
stress components away from the continuation of a planar crack
and, hence, branching [15] at certain values of V,. Branching is
expected to be suppressed by high compressive normal stress,
and for rupture in a weak layer (e.g., of a damaged fault zone
rock) surrounded by a stronger material or along the interface
between such a layer and the host solid (or other dynamically
weak interfaces).

Inferred values of earthquake rupture velocity averaged over
the failure area are usually about 75% of the estimated vg of
the host rock [25, 53]. Such V, values may exceed the S-wave
velocity of the (damaged) fault zone material, which can be con-
siderably lower (e.g., by 25% or more) than that of the host rock.
In some cases, there is evidence ([46] and references therein)
that V, exceeds along part of the rupture surface the vg and
vg velocities of the host rock. Very low values of V, (e.g., 1%
vg of the host rock or less) are sometimes inferred in associa-
tion with so-called slow earthquakes (e.g., [22] and references
therein).

During a self-similar growth of a circular crack with uniform
V, and Ao, the slip is

Au = [A(V,)Ao/ul/ V22 — X2,

(4.6a)
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FIGURE 10 Singular stress and displacement fields with intensity
factors K and K f, respectively, for mode II or III shear crack having
frictional stress o/ and stress drop Ac.

where A(V,)is of order 1 for 0 < V, < vg and X is the distance
from the center of the crack.

The corresponding radiated far-field displacement is propor-
tional to the stress drop

u < 2t A(V)V3 2 Ao /. (4.6b)

Equation (4.6b) can be used to estimate the dynamic stress drop
from the initial pulse of seismic radiation.

For a crack growing in its plane, the energy release from the
crack tip per new unit surface area is

G = {(1 —v)(K? fi + K2 fu) + K2y fin} /200

The different mode-components of G decrease monotonically
with V, in the subsonic regime, from maximum values at V, = 0
to zero at the limiting speeds.

%))
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During a short-time crack extension of distance @ with nonuni-
form velocity V,.(¢), prior to arrival back at the advancing tip of
wave reflections from the other crack tip or boundaries, the stress
intensity factor of a given mode can be written as the product

K = K*(a)K[V,(1)] (4.82)

where K*(a) is the “rest” stress intensity factor equal to that of
a semi-infinite static crack that advanced the same distance a
into the same initial stress field and the non-dimensional func-
tion K[V, (¢)] decreases monotonically from unity at V,(¢) = 0
to zero at the appropriate limiting speed. Similarly, the corre-
sponding energy release rate can be written as

G = G*(a)G[V,(1)] (4.8b)

with similar interpretations of the terms.
The failure fracture criterion for initiation of rupture in a given
mode J =1, II, Il is

KJ = KJC (4921)

where Kj is the appropriate stress intensity factor and Kj, is a
corresponding material property called fracture toughness.

The failure fracture criterion for continuation of dynamic rup-
ture propagation is

G = G, (4.9b)

where G is a material property specifying the amount of energy
required for the creation of a unit new surface area. For a purely
brittle fracture process associated with the creation of a new
surface by a reversible separation of atoms, G, = 2I's with I'g
being the specific Griffith surface energy.

For a 2-D quasi-static crack extending in the x; direction, the
integral

J = /(Wnl —niaijauj/axl)dS
C

(4.10)

is path-independent for all contours C that begin and end on the
crack. In (4.10), n; are components of the outer unit normal to
C and W is the strain energy density W(e) = fog oj d&ij.

For frictionless cracks J = G, while for cracks that support
a frictional stress azfj, Jo=G+ szj(Auj)Q with Q being any
point on the crack.

5. Friction (5. [13], [31], [32], [35],
[38], [41], [42], [45], [50])

The resistance to initial macroscopic tangential motion along a

sliding surface is often described by the Coulomb friction
T =c+ fion (5.1

where c is a cohesion term representing resistance due to joined
portions of the surface, f; is the static coefficient of friction,
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and o, is normal stress. In cases where pore fluids are present,
o, should be replaced by o7’ = (5, — p) with p being the
pore pressure. The same holds for o, in all other expressions
of this section. In friction experiments with many rock types
(not including some clay materials), the data can be fitted by the

lines

(c=0, f;=0.85) for o, <200 MPa (5.2a)

and

(c =50 MPa, f; =0.6) 200 MPa < 0, < 1700 MPa

(5.2b)

for

with some scatter representing, at least in part, dependency on
surface conditions and rock type. Equation (5.1) with coeffi-
cients given by (5.2) is referred to as Byerlee friction.

Equation (5.1) also describes the failure envelope on a Mohr
diagram of rock fracturing experiments with o;, < 1000 MPa. In
that context, f; is called the coefficient of internal friction, and
inferred values of f; are, as in Byerlee friction, about 0.7. How-
ever, values of ¢ in shear fracture experiments are considerably
larger than those associated with frictional sliding.

Frictional resistance in which the friction coefficient decreases
with slip Au is referred to as slip-weakening friction (Fig. 11).
A simple triangular form often used in numerical calculations is

f=/rf—s—fdAu/D. for Au<D. (53a)

and

f=fa for
where f; and f; are static and dynamic friction coefficients and
D, is a characteristic slip-weakening distance. In the context of
the slip-weakening friction (5.3), the fracture energy density per
unit fault area associated with the breakdown processes leading

Au > D, (5.3b)

i Ao

A /

FIGURE 11 A schematic diagram of slip-weakening friction with
strength o(Au) decaying from a peak value o to a residual level 6' over
a characteristic slip distance D.. The sizes of the breakdown zone and
stress drop are X, and Ao, respectively.
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to strength degradation (see e.g., Fig. 14a) is

Gc = Un(fv - fd)Dc/2

Values of G based on shear laboratory fracture data [31, 41]
with various pressure-temperature conditions and rock types, in-
terpreted with slip-weakening friction, are in the range 10*-10°
J/m2. For comparisons, estimates of G, based on initiation and
stopping of earthquakes and modeling of seismic data are in the
range 10°~108 J/m?, estimates of G. in tensile lab fracture ex-
periments with granite are in the range 3—50 J/m?, and estimates
of the specific Griffith surface energy for various materials are
in the range 1-2 J/m?.

The spatial region behind the tip of the sliding material where
the strength degradation occurs and slip achieves a value of D,
(see Fig. 11) is called the process zone, degradation zone, or
breakdown zone. The linear size of this region is

X =cuD./lo,(fs — fa)]

where c is adimensionless constant of order 2-3 and  is rigidity.
Laboratory values of D, depend on the roughness of the sliding
surface and possible existence of gouge. In experiments done
so far [31, 41], it is in the range (10‘6 —5x 10‘4) m. Using
fs — fa =~ 0.05 and a representative ratio for the seismogenic
zone (1/o, ~ 300 implies values of X_. in the range (10~2—~10) m.
Implications of the critical weakening distance to nucleation of
slip instabilities are discussed below.

Rate- and state-dependent friction laws characterize the de-
pendency of the friction coefficient on slip, slip velocity, his-
tory (represented by state variables), and normal stress. In a
“standard” form of rate- and state-dependent friction (Fig. 12),
with a single state variable 6 and no dependency of the fric-
tion coefficient on normal stress, the friction coefficient can be
written as

(5.3¢)

(5.3d)

f = fo+aln(v/vy) + bln(vy /L) (5.4a)

where fy is a nominal friction coefficient (about 0.7 for most
rocks as indicated in (5.2)), v and vg are current and reference
values of sliding velocity, a is the amplitude of the initial re-
sponse to a velocity jump, and b is the amplitude of gradual
strength alteration over a characteristic slip distance L (also de-
noted by D,) following a velocity jump. There are two common
versions that describe the evolution of the state variable. In the
“slowness” version, the state variable satisfies

do/dt =1—v0/L (5.4b)
whereas in the “slip” version
do/dt = —(v8/L)In(v0/L). (5.4¢)

In both cases, during steady-state sliding with constant veloc-
ity and slip distance larger than L, 6 = L/V and the steady-state
dependency of the friction coefficient on the sliding velocity is

fss = fo+(a — D) In(v/vo). (5.4d)
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FIGURE 12 A schematic diagram illustrating the main features of rate- and state-dependent friction in laboratory experi-
ments with sliding velocities in the range 10~°~10~3 m/s. The top panel shows the response to velocity jumps. The bottom
panel shows the steady-state frictional behavior in a velocity-weakening regime and evolution around the steady-state behavior
corresponding to the velocity jumps in the top panel.
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For the “slip” version (5.4c), the friction coefficient following a
step change of sliding velocity from v; to v, can be written in
the slip-weakening form

f = fss(UZ) + exp(_S/L)[fss(Ul) - fss(UZ) +a 111(112/1)1)]
(5.4e)

where § = vt is measured from the time of the velocity jump.

Expression (5.4a) as written is not appropriate for very low
and very high values of sliding velocities. A simple regulariza-
tion near v = 0, motivated by Arrhenius thermal activation of
creep at asperity contacts, is to invert the equation to an expo-
nential form for v and then replace exp(f/a) by 2sinh(f/a).
This leads to

f = asinh ' {(v/2vp) expl(fo + bIn(vod/L))/al}.  (5.4f)

In addition, v should be replaced by |v| in (5.4b) and (5.4¢) to
allow velocity of either sign, and there should be an upper limit
cutoff at some high slip velocity.

If a > b, the overall change of f with increasing sliding
velocity is positive, the friction is velocity-strengthening, and
only stable sliding is possible. On the other hand, if a < b, the
overall change is negative, the friction is velocity-weakening,
and dynamic instabilities can occur. The situation a < b pro-
vides a necessary but not a sufficient condition for instability.
The occurrence of instability requires a rate of weakening that
is larger than the rate of stress reduction (stiffness of the system)
on a slipping patch. For a given material under fixed pressure,
temperature, surface roughness, and other relevant conditions,
the rate of weakening is constant and is given approximately
by (b — a)o,. The rate of stress reduction depends on the size
of the zone that is slipping coherently. Infinitesimally small slip
patches are infinitely stiff and are always stable, but as a slipping
zone grows larger, its stiffness decreases and it can turn unstable.
This happens when the slip patch reaches a critical “nucleation”
size for which the rate of stress reduction is first equal (from
above) to the rate of weakening. The nucleation zone size for
a failure process governed by rate- and state-dependent friction
is

h* = CuL/[(b — a)o,] (5.4g)

where C is a dimensionless constant of order 1. The nucleation
size, at which there is a transition from aseismic slip to dy-
namic rupture, can be used to obtain an estimate for a minimum
earthquake size. Observed values of L with sliding velocities in
the range (1078-10~") m/s are generally somewhat smaller [13,
38] than those associated with D, values of slip-weakening ex-
periments. Observed values of (b — a) in pressure-temperature
conditions corresponding to the brittle seismogenic zone are
about 0.02. The scalar potency release associated with the nu-
cleation process can be calculated roughly by using w/o, ~
300 to estimate 2™ and multiplying the area of a circular patch
with the obtained A* by observed values of L (or D.). Con-
verting the result to an earthquake magnitude using empirical
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moment-magnitude or potency-magnitude scaling relations (see
section 6) gives a range of minimum earthquake magnitude cen-
tered around —3.

6. Earthquake Source Parameters

and Scaling Relations
(11, [2], 6], [8], [11], [14], [16], [19], [20], [22], [23], [26],
[31], [35], [36], [39], [48], [50], [52], [53])

Faulting is associated with nonlinear inelastic deformation, in-
tricate energy partition, evolving material properties, and other
complexities. In general, faulting under natural conditions is
inaccessible for direct observations, and earthquake source pa-
rameters are typically estimated from inversions of seismic and
geodetic data in the far-field. This necessarily parameterizes the
source process in terms of equivalent deformation in a linear
elastic solid surrounding the inelastically deforming regions.
Geological observations, lab studies, and measurements in mines
provide limited direct information on the faulting process proper,
although typically for conditions far removed from those operat-
ing in natural tectonic faults at seismogenic depths (e.g., 7.5 km
for continental strike-slip faults).

The most common form of earthquake data consists of seis-
mic catalogs that typically list the time, location, and magnitude
M of earthquakes in a given space-time domain. Instead of (or
in addition to) M, some catalogs list the scalar seismic moment
M, which gives (as does the scalar potency Py) a better physi-
cal characterization for the overall size of an earthquake source.
The scalar moment and potency are typically derived from the
zero-frequency asymptotes of far-field displacement spectra (see
equations (3.5b) and (3.8), Fig. 7, and related results in sections 2
and 3). Additional important parameters that augment the infor-
mation contained in the scalar moment and potency are radiated
seismic energy E, stress drop Ao, fracture energy G, rupture
velocity V,, and directivity.

With a proper distribution of stations around the fault, it is
possible to derive fault-plane solutions from observed earth-
quake seismograms, and this has been done for many thou-
sands of earthquakes (see equation (3.7b) and related material).
Fault-plane solutions provide information on the strike, dip, and
slip angles of the earthquake rupture (Fig. 13) and directions of
maximum (P) and minimum (T) compressive principal stresses,
with an ambiguity of an auxiliary set of quantities. Indepen-
dent constraints from field observations, aftershock locations,
and other information can be used, when available, to separate
the earthquake fault plane and associated set of quantities from
the auxiliary set. In cases of well-recorded earthquakes, seismic
data can be inverted (usually with dislocation-based models) to
provide detailed images of earthquake slip histories (typically
so far with a resolution of about 3 km). At present, such slip
models have been derived for several tens of earthquakes [36,
53].
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Observed far-field displacement spectra can be fitted, after
corrections to remove propagation and recording-site effects, by

Q@) = Py/[1 + (0/wp)™ "] (6.1)

where Py is the scalar seismic potency, wy is corner frequency,
and observed values of the exponent y typically fall in the

North

b, strike angle

FIGURE 13 Fault and slip parameters. The strike 0 < ¢, < 2nis the
horizontal azimuth of the fault measured clockwise from the north. The
dip 0 < & < m/2 is the angle from the horizonal to the fault surface.
The rake —n < A < mis the angle between the strike and slip direction
of the hanging wall.

o (2)
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range 1-3. A finite total radiated energy implies that for high-
enough frequency y > 1.5. The symbol denoting the corner
frequency here is different from that used in the context of equa-
tion (3.8) because estimated values of the corner frequency ob-
tained by fitting spectra to (6.1) differ in general from values ob-
tained by the intersection of the low- and high-frequency spectral
asymptotes. This illustrates the more general point that inferred
values of seismological parameters often depend strongly on the
estimation procedure.
The static stress drop is defined as

AGsiaric = o’ — Uf (6.2a)

where 6% and o'/ are the initial and final stress values before and
after the earthquake. Similarly, the dynamic stress drop may be
defined as

AO-dynamic = GO - adyn (62b)

where o™ is a representative value of stress, such as average or
minimum, during the active portion of dynamic slip (Fig. 14).

The average stress operating on the fault by the surrounding
medium during an earthquake is

6 =(0"+0"))2. (6.2¢)

Expression (6.2c) is usually used to denote the average stress on
a fault area rather than at a point, in which case o%and o/ should
be interpreted as spatial averages along the failure surface.

o (b)
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FIGURE 14 Components of energy changes associated with motion on a fault surface during an earthquake without (a) and with (b) a
dynamic stress overshoot. The initial, peak, and final stress levels are denoted with o°, of, and of, respectively. The final slip is marked with
D. The gray line represents the stress operating on the fault by the surrounding medium, and the black curve represents the frictional strength
during slip. The radiated seismic energy Ey is the difference A, — A; between the areas below the gray and black lines. The area under
the black curve gives the frictional heat plus fracture energy. The shaded area and D, in (a) correspond to fracture energy G, and critical

slip-weakening distance, respectively.
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The change of energy generated by an earthquake slip is

—AE =6 (Au)S=(My/n)=6PF (6.3)

where (Au) and S are average slip and rupture area, respectively.
The energy reduction in (6.3) involves changes of elastic strain
energy, gravitational energy, and rotational energy of the Earth
[11] and is partitioned among heat, fracture energy (which is
a form of latent heat), and seismic radiation (see Fig. 14). The
radiated seismic energy E can be estimated by integrating ve-
locity seismograms with proper corrections for radiation pattern,
attenuation, and other propagation and recording-site effects.
The apparent stress is defined as

o = Eg/(Mo/ 1) = Er/ Pp. (6.4)
The seismic efficiency 7 is defined as
n=ER/|IAE| =1,/5. (6.5)

The radiated seismic energy and surface magnitude of earth-
quakes in the magnitude range 5 < Mg <8 are related via the
empirical Gutenberg-Richter relation

log,g Er = 1.5Ms +11.8 (6.6)

where E is in erg (= dyne cm = 1077 J).
The scalar seismic moment and magnitude of earthquakes
with M 2 3.5 are related via the empirical relation

log o Mo = 1.5M + 16.1 (6.7a)

where M, is in dyne cm (1077 J). Empirical scaling relations
between moment or potency and magnitude over a broad mag-
nitude range with single smooth lines require a quadratic term
[6, 20]. For example, the scalar seismic potency and local mag-
nitude of California earthquakes in the range 1.0 < M, <7.0 are
related via the empirical quadratic relation

log,q Py = 0.06M; +0.98M, — 4.87 (6.7b)

where P, is in km? cm.
For a classical crack sustaining a uniform stress drop over a
failure area S

My = ¢ A S (6.8)

where c is a dimensionless constant that depends on the failure
geometry and elastic properties. For example, ¢ = 16/(71%/?) ~
0.41 for a circular crack in an infinite Poissonian solid.

For a fractal-like failure in a rough stress field [16]

My o S. (6.9)

Equation (6.8) is used often to estimate the static stress drop
from inferred values of My and S. The obtained values, and
their physical interpretation, depend on the methods used to es-
timate My and S. The moment is typically derived from seismo-
grams, but sometimes it is obtained from field values or geode-
tic data. The area is inferred (typically with large uncertainties)
from directivity effects, pulse duration, and corner frequency in
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seismograms (see Fig. 7, equation (6.1), and related material),
as well as from aftershock locations, geological observations,
and geodetic data. The corner frequency can be estimated in
principle from most seismograms (although the obtained val-
ues depend strongly, as mentioned before, on the data type and
estimation procedure) and, hence, is used frequently. The large
uncertainties in inferred values of S produce large uncertainties
in estimates of Aoggsic.

Measurements of root-mean-square acceleration in seismo-
grams and assumptions on a source model can be used to obtain
a type of dynamic stress drop that may be referred to as Aoy, .
Another type of dynamic stress drop may be obtained from com-
paring the initial slope of velocity seismograms to analytical
results like equation (4.6b).

Inferred values of static and dynamic stress drops averaged
over the failure area are usually in the range 10~2-10> MPa [8,
25]. Inferred average values of apparent stress typically fall in
the same range, and estimates of average seismic efficiency are
about 0.06 or less [39].

7. Seismicity Patterns
(91, 1161, [18], [19], [23], [24], [27], [40], [56],
(58], [59], [60], [62], [63])

Seismicity exhibits a wide variety of fluctuations and patterns
in space, time, and energy (or magnitude) domains. At present,
analysis of seismicity is largely phenomenological with little
theoretical foundation, and many studies of seismicity are essen-
tially descriptive without quantitative formulation. Examples of
reported patterns include foreshocks, aftershocks, time intervals
of quiescence and accelerated seismic release, changes in b val-
ues of frequency-magnitude statistics, migration of seismicity
along and between faults, switching of activity on a given fault
between different modes of response, and other types of spa-
tiotemporal clustering, periodicities, and gaps. Many functions
have been employed to describe statistical aspects of seismicity
including power law, exponential, normal, lognormal, Gamma,
Weibull, Pareto, and Cauchy distributions. Formulas and proper-
ties of these functions can be found in http://mathworld.
wolfram.com (see also [23] and [59]).

It is important to distinguish between regional seismicity pat-
terns characterizing large spatial domains with many faults and
patterns characterizing individual fault systems. Since instru-
mental earthquake catalogs exist only for short duration (e.g.,
50-100 y) compared to recurrence times of large earthquakes
(e.g., 100-5000 y), most observational studies of seismicity have
focused on regional patterns for which more data are available.
Recently some works examined earthquake patterns on indi-
vidual faults by combining instrumental and geological data
(see, e.g., [19] and [63]). In general, regional seismicity appears
to be dominated by various forms of spatiotemporal cluster-
ing, while patterns associated with large individual faults (or
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fault segments) may include spatiotemporal periodicities such
as quasi-periodic occurrence of system-size events and spatial
regularity of microearthquake locations.

The frequency-moment statistics of regional earthquakes fol-
low the power-law probability density function

n(Mo) o< My ' " (7.1a)
and corresponding power-law survivor function
N(Mo) o< My * (7.1b)

where N(M,) = fAjj n(My) d M.

Similar power-law relations hold for frequency-energy statis-
tics of regional earthquakes. A maximum event size can be incor-
porated into (7.1a) and (7.1b) by multiplying the right sides of the
equations with the exponential tapering function exp(—Mo/M)
having a corner moment M that characterizes the finite size
effects. Frequency-moment distributions consisting of an initial
power law for small and intermediate size events and exponential
taper for large ones have been derived using several theoretical
frameworks, including critical branching process, critical phase
transition, and maximum entropy arguments.

Using the moment-magnitude relation (6.7a) in n(My)d My
of (7.1a) and N(My) of (7.1b) leads to the discrete Gutenberg-
Richter frequency-magnitude statistics

logn(M)=a —bM (7.2a)
and corresponding cumulative distribution
logN(M)=A—-bM (7.2b)

where b = 1.58 and observed b values of regional seismicity
typically fall in the range 0.7—1.3. Observed frequency-moment
and frequency-magnitude statistics of regional earthquakes are
also analyzed with a tapered Pareto and other distributions [24,
58].

The frequency-magnitude statistics of earthquakes in large
individual fault-systems, occupying narrow and long spatial do-
mains, often consist of a Gutenberg-Richter type distribution of
small events combined with enhanced statistics around a larger
“characteristic” earthquake. This may be described empirically
by a superposition (Fig. 15) of two separate populations, one fol-
lowing Gutenberg-Richter statistics over the magnitude interval
M. < M < M, and the other a Gaussian distribution centered
on event size M, > M. Such statistics can be written as

log[n(M)+ 1] =(a—bM)HM — M. )H(M, — M)
+ cexp[—(M — M»)*/207]

x H(AM — |M — M,|) (7.3)

where H is the unit step function and c is a normalization factor.
If (M, — M| > AM as in Fig. 15, equation (7.3) has no events
in the magnitude gap M| < M < M, — AM. The distribution
is assumed to describe data collected over sufficient duration
sothat n + 1 ~ n for M, < M < M, and | M — M,| <
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log [n(M)+1]
A

+ t+ + + t + + + + t >
M, M, M, M
FIGURE 15 A schematic representation of discrete frequency-
magnitude statistics of earthquakes on individual fault systems with two
separate populations: a Gutenberg-Richter distribution of small events

and a peaked Gaussian-like distribution around a large characteristic
event size.

AM. In applications to observed data, ¢ should be determined
from the number of events associated with the “characteristic
bump” around M, before estimating the other parameters of
the Gaussian distribution. In some cases it may be possible to
fix the value of M, based on independent geological data. It
is also possible to replace the abrupt truncations in (7.3) with
smooth tapering and to replace the Gaussian distribution with
other peaked functions. One example is the symmetric rescaled
Beta function c(M + AM — My)* Y(M, + AM — M)*~! with
o> 1.

Aftershock decay rates can usually be described by the mod-
ified Omori law

AN/At=K(t+c)F (7.4)

where N is cumulative number of events, ¢ is time after the
mainshock, and observed values of the exponent p typically fall
in the range 0.7—1.5. A finite total number of events implies that
for large enough time p > 1.

The Epidemic-type Aftershock-sequences (ETAS) model
combines the modified Omori law with the Gutenberg-Richter
frequency-magnitude relation for a history-dependent occur-
rence rate of a point process in the form

Ko expla(M; — M,)]
t—t+c)p

MiH) =1+ (75)

t<t

where p is a constant background rate, M; is the magnitude of
earthquake attime #;, M, is alower magnitude cutoff, H, denotes
the history, and the factor Ky exp[o(M; — M.)] gives the number
of events triggered by a parent earthquake with magnitude M;.
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Large earthquakes are sometimes preceded by a period of
accelerated seismic activity in a broad surrounding region of di-
mension that generally scales with that of the large event. During
such activation periods, several functions of various seismicity
parameters (e.g., number N and moment M) can be fitted by
a number of functional forms. One example is the power law
time-to-failure relation of cumulative Benioff strain

> M) = A+ B — 1" (7.6)

<t

where ¢ is time, # is failure time of the large event terminating
the phase of accelerated seismic release, and observed values of
the exponent m typically fall in the range 0.2-0.4.
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