#### Last Class's Outline EAS 4801 - Planetary Sound Lec#2: Wave Properties · Introduction to the course - Class logistics, requirements and policies Dr. Zhigang Peng - Intro to your instructor 01/08/2020 Spring 2020 Course goals and tentative plan · A brief introduction of sound and wave propagation Class Website: http://geophysics.eas.gatech.edu/classes/PlanetarySound/ Username: geophysics Passwd: tectosphere 1/6/2020 2 zpeng Sound

3

### **Measuring sound**

Frequency (pitch) – vibrations or cycles per second (Hz, KHz)

Speed – how fast does sound wave propagate

Amplitude – size of the vibration

1/6/2020

Loudness - perceived strength of a sound (frequency dependent)

Intensity - energy carried by a sound (dB scale)

## **Representing waves graphically**





#### Pressure vs. Position

The pressure at a given point in a medium fluctuates slightly as sound waves pass by. The wavelength is determined by the distance between consecutive compressions or consecutive rarefactions. At each compression the pressure is a tad bit higher than its normal pressure. At each rarefaction the pressure is a tad bit lower than normal. Let's call the equilibrium (normal) pressure P<sub>0</sub> and the difference in pressure from equilibrium  $\Delta P$ .  $\Delta P$  varies and is at a max at a compression or rarefaction. In a fluid like air or water,  $\Delta P_{max}$  is typically very small compared to P<sub>0</sub> but our ears are very sensitive to slight deviations in pressure. The bigger  $\Delta P$  is, the greater the amplitude of the sound wave, and the louder the sound. *wavelength*,  $\lambda$ 



zpeng Sound









# The Frequency of a Sound Wave

Audible Range: 20 Hz ----- 20,000 Hz.

Infrasonic waves: Sound waves with frequencies < 20 Hz.

Rhinoceroses use infrasonic frequencies as low as 5 Hz to call one another

Ultrasonic waves: Sound waves with frequencies > 20,000 Hz.

Bats use ultrasonic frequencies up to 100 kHz for locating their food sources and navigating.





### Wave speed

distance wave travels in a second (m/s)

= wavelength (m) x number of waves each second (s<sup>-1</sup>)

In symbols, 
$$v = f\lambda = \lambda / T$$

• Here T is period, which is inversely proportional to frequency f.

• To find the speed of sound, measure a distance and a time.

1/6/2020

zpeng Sound

16



| Medium | Speed (m/s) |
|--------|-------------|
| Air    | 343         |
| Helium | 972         |
| Water  | 1500        |
| Steel  | 5600        |

# **Temperature and Sound Speed**



Because the speed of sound is inversely proportional to the medium's density, the less dense the medium, the faster sound travels. The hotter a substance is,

the faster its molecules/atoms vibrate and the more room they take up. This lowers the substance's density, which is significant in a gas. So, in the summer, sound travels slightly faster outside than it does in the winter. To visualize this keep in mind that molecules must bump into each other in order to transmit a longitudinal wave. When molecules move quickly, they need less time to bump into their neighbors.

> The speed of sound in dry air is given by:  $v \approx 331.4 + 0.60$  T, where T is air temp in °C. Here are speeds for sound:

Air, 0 °C: 331 m/s Air, 20 °C: 343 m/s Iron: 5130 m/s Glass (Pyrex): 5640 m/s 1/6/2020 zpeng Sound

n/s Water, 25 °C: 1493 m/s n/s Diamond: 12000 m/s 20