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Figure 6.2-3: Amplitude spectra for the body and surface wave segments  Figure 3.3-29: Seismic section before and after deconvolution.
from a large earthquake.
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Last Time

* Course Introduction
— Class logistics, requirements and policies
— Class schedule

* Introduction to digital signal processing and its
relation to seismological research

* Fourier Series/Fourier Transform

Reading: Stein and Wysession Chap. 6.1 — 6.2
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Today’ s Outline

» Fourier transforms
* Linear systems

Reading: Stein and Wysession Chap. 6.2-6.3
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What is a Delta Function?

« The Dirac delta function, or 6 function, is
(informally) a generalized function depending on
a real parameter such that it is zero for all values
of the parameter except when the parameter is
zero, and its integral over the parameter from —oo
to o is equal to one. (From wipipedia)

12

10

08

111019 2 1 o 1

Delta function

- Two definitions of a delta function at € = £,.

Three ways to define it
1 —1(t-1,)"] ¢
d(t-t,)=lim exp|— SRR
(t=t) =002 p[2( o ) <
o o | & | v |
)= [F@0(=1,)d

Step function H(t - t,)

O(t—t)=dH(t-t,)/dt
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Fourier transform of the delta
function

* To find the Fourier transform of the delta
function, we use the definition of the
transform with f(¢)=06(t-t,)

F(w)= fe'imé (t-t,)dt=e"™

» The amplitude spectrum is |F(@) = ("¢ )"

* The phase spectrum is (@) =,

1/10/19 zpeng Seismolgy Il

=1




Figure 6.2-6: Amp de and ph pectra of the Fourier transform of a

delta function.
Amplitude Phase
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S-function spectrum -
« Ifthe delta function is at time zero,
F(w)= fe‘“”’é (t)dt =1
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Fourier transform of the delta
function

The delta function’ s amplitude spectrum has
unit amplitude at all frequencies.

The output from a linear time-invariant
system with delta function input is called
impulse response (in time domain), and
transfer function (in frequency domain).

The inverse transform of the delta function
1 p —iwt, _iwt
f(t)—gil;e e"dw =8(t-1,)
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Figure 6.2-7: Fourier transform of a delta function as the sum of sinusoids
of all frequencies.
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Delta function in the frequency
domain

A delta function at angular frequency @, has
an inverse transform

1 p iwt _ 1
f(t)=E:£6(w—wo)e dw—ﬂ

iw )t
e

So we can express the delta function in
terms of its Fourier transform

1= ) 1=
S(@ -w,)=— ["e ™dt =— ("™ dt
( ) 2 J; 2 J;
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Delta function in the frequency

domain

* Delta function in angular frequency give the
spectra of sinusoids with a single frequency.

» For example, a cosine with frequency @,
f(t)=cosmt=("" +e"")/2

* Has a Fourier transform

F(w)= %i(e"w +e et = %i(e“’"""")' e gy

F@)=n[é(w-w,)+6(w +w,)]

1/10/19 zpeng Seismolgy Il 1

Linear Systems

A “system” is a general representation of
any device or processes that takes an input
signal and modifies it.

A “linear system” is is defined by the
following diagram, and is previously
referred as the principle of

Figure 6.3-1: D of a linear sy
Axy(t) —> Linear — Ay (1)
o = Ay, (t) + By,(t)
Bx,(t) —|  syste — By,
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Linear Systems

* The earth generally behaves as a “/inear
system” when transmitting seismic waves.

* Hence, linear system models are used in a
wide variety of seismological applications.

* Fourier analysis is a natural tool for studying
linear systems because Fourier transform has
the same linear properties.

* Can you think of any cases when the Earth is
behaving as a “ 77
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Impulse Response of a Linear
System

Figure 3.3-29: Seismic section before and after deconvolution.

Impulse Linear system: f(t) Impulse response;
8@t response f(t) F(w) Transfer function
Arbitrary Linear system: y(t) = x(t) = f(t);

—
x(t) response f(t) Y(w) = X(w)F ()

Harmonic Linear system:

> > (gl
ot response £(t) Foghe
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Linear Systems
* The output spectrum of an arbitrary input signal

Y(@)=X(@)F(w)

* The output in the time domain y(¢) can be found
y(t) = LfX(w VE(w)e' ™ dw
2w

+ For the impulse x(1) =8(¢) , X(w)=1, ¥(¢) = f(?)
« For a harmonic input signal x(¢) = ™
* The transform is the delta function in frequency
domain X (w)=2n6(w -w,) . The output is
Y(w)= %meS (@ -w, )F(w)e'™dw = F(w,)e™
7T -0
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Relation between the input/output
and the impulse response

Y= [X@)F @) dn
y(t)= 2;i[ix(f)e'imdr][_wx(r')e"’mrdr’}e"”’dw

¥(t)= }}X(r)f (r’)[zir }e""””‘"‘”dw}drdr’

—00—00

y(@) = }x(r)[}f(r')é(t -7’ —r)dr'}dt

_______

y(1) = x(6)* f(2)

Convolution
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y(t)=fx(f)f(t-f)d‘f

Figure 6.3-3: Bandpass filter in the fr y and time d.
Bandpass filter transfer function
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Convolution and deconvolution
modeling in seismology

* Linear system ideas are pervasive in
seismology.

« If a signal x(f) goes through two linear systems
in succession with impulse response f{f) and
2(?), the output is either a convolution in the
time domain, or the product of the transfer
functions in the frequency domain.

Figure 6.3-4: Two linear systems in succession.

f(t) £(t) = x(t); 9(t) £(t)  x(t) * g(t)
X —>| ) > FoX(@) — | Gl Fo)X(@)G(@)
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Convolution and deconvolution
modeling in seismology

u(t) = x(t)* g(t)*i(t)

Figure 6.3-5: Seismogram as the convolution of the source, structure, and
instrument signals.

Source Structure Instrumem Selsmogram
x(t)
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Figure 6.3-6: Transfer functions for various seismometers.
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Response of a system in space by
convolutions

U.S. Geological Survey

& % Figure 1.2-5: Predicted strong ground motion in eastern and western U.S.
National Seismic Hazards Map
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The Green’ s function

* The displacement at a point x and time ¢ is
u(x,t) =ffG(x -xt=t)f(x',tHdt'dV'

« Where G(x-x;t—¢") isthe Green's
function, the impulse response to a source at
position x " and time ¢”, and f(x',¢") is the
distribution of the seismic sources.

* In a general medium

u(x,1) =ffG(x,t;x',t')f(x',t')a’t'dV'
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Inverse filter
* We assume that a seismogram s(¢) results from
convolution of a source pulse w(f), and an
earth structure operator ().
s(t) =w(t)*r(1) S@)=W(@)R@)
* We can create an inverse filter
w (1) = w(t) = 8(1)
* The Fourier transform of the inverse filter is

just 1/W(w), so the deconvolution can be done
by dividing the Fourier transforms

S(@)/W(w)=R(@)
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Water-level deconvolution
* For S(@)/W(w)=R(w)
* What happens if W(w) is very small?

A Amplitude Specteum with Amplitude Spectrum
water-lovel highlighted After water-level
M S —_
'_..ﬂd U™ VNM = \/\’\ AN
Filtered ’/
Frequency é Frequency "

http://eqseis.geosc.psu.edu/~cammon/HTML/RftnDocs/seq01.html
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Example of deconvolution

Figure 6.3-7: Diagram of the receiver function approach.
Direct
P

Synthetic radial receiver function

PP

conversion PSS

3-component
seismic station

Converted phase ray diagram

o1 02

a1 00
Amplitude

Zhu (EPSL, 2000)

e ey |l

© 10 20 30 4 5 60 70 8 % 100

Example of deconvolution

Free surface

7
%
AFP \Avo/
I =\
NUAT
e
e
= W
wioky Fault One day
»@9/ zone after the
‘.1 7 mainshock

[t

30200 3030 040 3050 3100 310 3120 08

Amplitude (2)
828
<
o

02 FP
ol *
0 5 10 15 20 28 30 35 40
Time ()
0.1 30
vo ® . ©
i B
£ 220
Z 005 H
H i
2
A 0 - 0
30°48' 30°50° 30°52 30°54° 30°56° 12 4 6 ] 10 12 4 6 8 10
Frequency (Hz) Frequency (Hz)
11019 From Chunquan W zpeng seismolgy 1 26

Finite length signals

» Consider a window function b(z). Its effect on
the data f{¢) is represented by multiplying f{¢) by
b(t).

G(@)= [b(0)f (D) " dt

E3

)= f [2; JB@ ’)e"”"dw'] [2; }F(w e der "}e'“‘”dt

3

@

}‘F(w”)[;n_feim”w“iw”ldt:|dw”

-

dw'

1 p r
=g£3(w)

= ;riB(w’)[:ZF(w "o (w —w' —w")dw"}dw'
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Finite length signals
* Using the sifting properties, we obtain
G(w) = éj‘;B(w') iF(w")&(w ~w' -w"dw"|dw’
15, N .
=E:£B(w VF(w -w')dw' = E. B(w)*F(w)

* Hence, the effect of multiplying a time series by a
window function is that the spectrum of the time
series is convolved with the spectrum of the
window function.

* This is what is expected!
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Effects of a boxcar window function
b(t)=1 for-T<¢T,
=0, otherwise.

Its Fourier transform is:

—iwt

B . .
i e r  2sinwT 2T sinwT
B@)= [ ™dt=——|';= =
J. —-iw w ol
Figure 6.3-8: A boxcar function in the time and frequency domains.
Time senies: b(t) Amplitude spectrum: Blw)
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Figure 6.3.9; Effects

Data length and requency resolution

Tt i f(®) is a sine wave.
l What' s the effect?
Soerconwen 203 BRI Taking a finite length of record

= “smears” the delta functions of
the infinite length record’ s
spectrum into boader peaks with
side lobes.

Input signals contains
different frequencies

m of 2 sine 120s|
s with 105 and 205 periods

The frequency resolution, the
minimum separation in frequency

——

(<) sampled 120s] -2 0

. p— for which two peaks can be
resolved, is proportional to the
reciprocal of the total length.

Qunpes 203 &
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“Uncertainty principle” in time and

frequency domains

“ . ” . W. Heisenberg
* The product of the “widths ™ in the two

domains is constant.

* For a time domain record with duration T,
the resolution in the frequency domain is
proportional to 1/T.

* Perfect resolution in frequency requires
infinite record length in time.

* Infinite bandwidth in frequency is needed to
represent a time function exactly.
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Tapered boxcar functions

W(t) =

1 l+cosM JJor-T <t<-T+T,

2 L

=l[1+0057”(t_T+T')
1

},ﬁ)rT—T] <t<T

Figure 6.3-10: Effects of tapering a boxcar function on the amplitude spectrum.
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Similarly, band-pass
filters are often
tapered in the

" frequency 2 frequency domain.
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What we have learned today

* Linear systems
— Basic models
— Convolution and deconvolution modeling
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Next time

* Finite length signals
» Correlation
 Discreet time series and transforms

Reading: Stein and Wysession Chap. 6.4
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