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Abstract

From catalogs of available declassified underground nuclear explosions, we compiled
a comprehensive seismic waveform and event catalog termed GTUNE (Georgia Tech
Underground Nuclear Explosions). Nuclear blast seismic records are sourced from pre-
viously prepared published datasets and openly available waveforms from online
sources. All seismic traces were assembled into a user-friendly format compatible with
most python-based machine learning (ML) packages. The GTUNE dataset includes the
raw seismogram time series, event coordinates and origin time, sampling rate, station
metadata, channel, epicentral distance, and P-wave arrival time from the origin dataset
when available and otherwise identified using a tuned automated picker. This is the
first openly available comprehensive global underground nuclear blast seismic dataset
and consists of 28,123 vertical-component waveforms from 774 nuclear test blasts
between 1961 and 2017 recorded between 0 and 90 epicentral degrees. For stations
where data are not directly included due to data-sharing restrictions, the mechanisms
to acquire and process these data are included. In this article, we describe various steps
involved in data collection and quality control to ensure accurate labels, and present
summary properties of the catalog and data set. The catalog was initially developed
for applications with ML methods but can be used for a wide range of studies such
as source physics, earth structure, and event detection methodological development.
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Introduction
Problems of data availability, quality, and the incapability of syn-
thetic data to match recorded ground motions at short periods,
are problems that have often been the factors limiting progress
in seismology using historical data (Kim and Ekstrom, 1996;
Richards and Hellweg, 2020). In addition, the vast majority
of nuclear events were recorded during the predigital seismic
era (Figs. 1 and 2) in analog form on either paper or microfilms
that remain largely underused (Bent et al., 2020). These issues
are particularly problematic for research studies focusing on
nuclear explosion events (Richards and Hellweg, 2020), as well
as monitoring long-term changes in the deep Earth interior
(Song and Richards, 1996; Vidale et al, 2000; Wang and
Vidale, 2022). Over the past few decades, some seismograms
digitized from analog recordings have become available to the
seismological community (Richards et al., 1992; Walter et al.,
2004; Ishii et al., 2015; Vidale, 2021). However, they are stored
in different formats and locations, have restricted access or
expired links (Bennett et al., 2010), making it difficult to utilize
them in a systematic and efficient way.

With recent advancements in machine learning (ML),
modern methods of seismic analysis and digitization of analog
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seismograms, the potential for using lower quality historical
data in combination with high-quality digital data from more
recent seismic events for effective analysis and research is prov-
ing possible (Del Pezzo et al., 2003; LeCun et al, 2015; Okal,
2015; Maceira et al., 2017; Nakano et al., 2019; Dickey et al.,
2020; Richards and Hellweg, 2020). However, historical seis-
mograms, such as the vast majority of underground nuclear
test data, can be made more usable to most seismologists
and data scientists if they are in formats that enable modern
methods of analysis (e.g. Richards and Hellweg, 2020). A large,
and more importantly, adequate quality dataset of nuclear blast
seismograms can be used for developing more robust global
nuclear blast detectors, and also to serve as examples of seismic
events with verified ground-truth information including origin
times, depths, and locations for Earth structure and source
physics studies (e.g., Richards and Hellweg, 2020).
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Figure 1. Global map of all underground nuclear explosions (UNE) (black), digitized former Soviet Union (FSU) (teal; Richards et al.,

included in the Georgia Tech Underground Nuclear Explosions 1992), Lawrence Livermore National Laboratory (LLNL) (purple;
(GTUNE) data. Multiple UNEs (red stars) frequently recur at or Walter et al., 2004), and National Research Institute for Earth
near the same location. Recording seismic stations (triangles) are Science and Disaster Resilience (NIED) (pink; NIED, 2019). The
also shown, with colors differentiating data sources: color version of this figure is available only in the electronic
International Federation of Digital Seismograph Networks (FDSN) edition.
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Figure 2. Count of UNE tests performed (red) and count of digital version of this figure is available only in the electronic edition.

and digitized waveforms (blue) of UNE's in this dataset. The color

Recently, several global seismic datasets have been compiled  (e.g., Mousavi et al., 2020). However, all of them are generated
by several groups (e.g. Mousavi et al., 2019; Michelini et al., by natural earthquakes at local, regional, or teleseismic distances.
2021; Yeck et al., 2021), and they have been extensively used =~ Here we assembled a comprehensive dataset of all known,
by the seismological and other scientific communities to  declassified, and globally available nuclear blast time-series data
develop ML and other modern methods for seismic processing  primarily for modern seismic data analysis and ML applications.
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From catalogs of available declassified underground nuclear
explosions (UNE), we compiled a comprehensive seismic
waveform and event catalog termed GTUNE (Georgia Tech
Underground Nuclear Explosions). The GTUNE dataset
includes the raw seismogram time series, event coordinates
and origin time, sampling rate, station metadata, channel, epi-
central distance, and P-wave arrival time from the origin dataset
when available and otherwise identified using a tuned auto-
mated picker. In this compiled dataset, both python algorithms
to download digital times series from the Incorporated Research
Institutions for Seismology (IRIS) International Federation of
Digital Seismograph Networks Seismograph Networks (FDSN)
webservers and the National Research Institute for Earth Science
and Disaster Resilience (NIED) High Sensitivity Seismograph
Network (HI-Net) array, as well as combined historical datasets
are included. A labeled training dataset that includes one minute
long, vertical-component seismograms of earthquake and
nuclear blast P waves, and noise is also included. We envision
that this dataset can be used to study deep-earth structures such
as inner core scattering and rotations (e.g., Wang and Vidale,
2022) as well as event classification and discrimination studies.
This is the first globally comprehensive underground nuclear
blast time series dataset to be assembled for the use of seismol-
ogists and data scientists alike for modern python usage and the
purpose of ML applications.

Data

Creating a comprehensive global underground
nuclear blast catalog

We initially created a catalog of all UNE performed by the
nuclear-weapon states, which include the United States, the
former Soviet Union, United Kingdom, France, China, and
more recently India, Pakistan, and Democratic People’s
Republic of Korea (DPRK) from 1945 to present. We compiled
a catalog of confirmed declassified nuclear tests from the
Sweden Defense Research Establishment and Stockholm
(SIPRI) Defense
Research Establishment Division of systems and Underwater
Technology’s report (Bergkvist and Ferm, 2000) and U.S.
Department of Energy (DOE), National Nuclear Security
Administration, Nevada Field Office “United States Nuclear
Tests July 1945 through September 1992” report (DOE/NV-
209, 2016). These reports provide accurate event coordinates
and detonation times from 1945 to 1998. The SIPRI report is
a comprehensive list of all declassified global nuclear test blasts.
However, for more precise origin information for the nuclear
test blasts the United States is responsible for, we augmented
the SIPRI catalog with the more recent and precise DOE report
that includes information on all nuclear tests performed or aided
by the United States and includes updated origin information.
For the most recent international events not covered in either the
SIPRI or DOE reports, namely the six DPRK nuclear test
blasts, origin information was sourced from the International

International Peace Research Institute
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Seismological Centre (ISC) Engdahl-van der Hilst-Buland
catalog (EHB) Bulletin reports, which uniquely identify these
events’ origin time, location, and body-wave magnitudes
(my,), but remains a nonauthoritative source for nuclear events.

We initially translated on-screen PDF catalogs to accurate
machine-readable digital tables. Although the files all have
either partial optical character recognition, or direct font rec-
ognition, they are not directly computer readable text files, and
require manual evaluation and correction to be converted to
simple tabular formats for program readability. We developed
algorithms to efficiently read through the UNE catalog, query
the data center at the IRIS Data Management Center (DMC),
and check and report on timing issues and data availability and
to update the SIPRI catalog with origin timing, location, and
yield information for each event included in the DOE report.
Ultimately, a singular computer-readable catalog of all declas-
sified nuclear events that reports the source information and
country responsible for the test was compiled in a text file in
the format seen in Table 1. Because above ground (and under-
water) tests have relatively poor seismic coupling with the solid
earth, we only include underground tests for the final digitized
catalog. Underground tests are those detonated beneath the
surface of the Earth and have location classification of “shaft”
(bottom-drilled vertical holes, with “shaft/G”: in a well, and
“shaft/LG”: in lagoon of an atoll), “tunnel” or “gallery” (hori-
zontal tunnels in mountain or mesa), or “mine” (detonated in a
mine) (Bergkvist and Ferm, 2000). Five events (four “surface”
and one “crater”) are also included that were detonated on the
Earth’s surface.

Of the comprehensive list of 2050 declassified nuclear tests,
802 were detonated underground, and 774 of those had at least
one minute of waveform data available sampled at a minimum
of 20 sps (see Table 2). There are 107 nuclear test blasts that
involved more than one detonation for that location and time,
differing temporally by hundredths of seconds to minutes.
About 13 of those 107 had a blast detonation time difference
greater than 1 s. The blasts were labeled as a single event if
the detonations were within 30 s of each other, and the origin
time of the first event was used for the catalog. If the difference of
detonation times was 10 min or greater, each blast is considered
a unique event, and not a source with multiple blasts. Following
the format of the SIPRI catalog, the GTUNE catalog notes the
number of blasts for each event. Event names in the catalog are
defined as a 12-digit serial number comprised of the test year,
month, day, hour, and minute: “YYYYMMDDHHMM.”
Figure 1 shows locations of underground nuclear blasts and
recording stations included in this dataset.

UNE waveforms

Using the GTUNE catalog, all available digital waveforms and
response files were downloaded from the FDSN webservers,
which incorporates data from a global archive of national
and international networks (see Data and Resources). For
November 2022

Volume 93 « Number 6 -«



TABLE 1
Georgia Tech Underground Nuclear Explosions
(GTUNE) Catalog Header Columns

GTUNE evid GTUNE identification number

Date (GMT) GMT year month and day
Origin time (GMT) ~ Hour minute second and tenth of second

Berg ID number Bergkvist Catalog identification number

Country Country responsible for explosion

Region Name of test site and/or geographical region
Source Explosion reporting source

Lat Approximate latitude

Long Approximate longitude

m, Body-wave magnitude reported by source
Mg Surface-wave magnitude reported by source
Depth (km) Depth in kilometers

Yield lower Lower range of yield estimate

Yield upper Upper range of yield estimate

Purpose Purpose of blast

Type Method of deployment

Name Detonation name

Number blasts/F? ~ Number blasts in test and/if footnote in Bergkvist cat

FSU Blast included in FSU dataset
LLNL Blast included in LLNL dataset
LASA Blast included in LASA dataset

FSU, former Soviet Union; LASA, large-aperture seismic arrays; LLNL, Lawrence
Livermore National Laboratory.

further completeness (particularly for the DPRK blasts), we
added the Japan NIED Hi-Net (National Research Institute
for Earth Science and Disaster Resilience [NIED], 2019) data
that are not available through the FDSN webservices. The
Python algorithm to download and reformat these seismo-
grams into the scheme developed for other waveforms in this
dataset is included in the repository. An interested researcher
must first acquire individual account credentials from the
NIED for access.

Our digital data fetching algorithm acquires all seismic data
from stations up to 90° distance from source epicenters,
includes 5 min of background signal prior to, and 30 min of
data after the initial P arrival, from all possible station channels
and location codes. To include stations that are recorded in
triggered modes (i.e., not continuously), we allow for data that
have gaps or overlap, and have at least 5% of the requested data
length. Although it is useful to filter out stations that are part of
different networks but are at the same physical station, no sta-
tion distance criteria was set to ensure all available data
Number 6«
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possible was collected. Our algorithm identifies which stations
each data center offers, then acquires miniSEED combined
waveform files and associated station XML metadata informa-
tion using the ObsPy package for Python (Beyreuther et al.,
2010). The parameters for station distance-degrees, seismo-
gram length, and sensor channel are editable for the user’s flex-
ibility in the provided script for digital data acquisition (IRIS
query.py). For the prepared GTUNE dataset, all seismograms
are cut to one-minute-long windows with the initial P-phase
arrival occurring at 10 s.

Waveforms are available through the FDSN webservices for
538 UNE’s from the year 1973 to 2017. Prepared historical data-
sets enable us to fill in data missing from earlier tests (1961 to
1998) that were largely originally recorded on tapes and later
digitized. These include the Lawrence Livermore National
Laboratory (LLNL) western United States seismic dataset
(Walter et al., 2004), the digitized analog seismic records from
the former Soviet Union (FSU) (Richards et al., 2015), and the
large-aperture seismic arrays (LASA) in Montana (Capon, 1970;
Vidale et al, 2000; Vidale, 2021). The LASA dataset includes
2755 waveforms from 10 UNE’s from 1969 to 1974. The
LLNL dataset includes 2950 seismograms from 73 UNE’s from
1968 to 1992 (Walter et al., 2004). 5045 digitized analog wave-
forms from 498 UNE’s from 1961 to 1999 are included from the
FSU dataset (Richards et al., 2015). Complete uncut waveforms
and metadata from all nuclear explosion tests (underground and
surface) sourced from the LLNL, LASA and FSU prepared data-
sets are also included in the GTUNE repository. Tables 2 and 3
summarize the waveforms and data sources that make up the
GTUNE repository and Figures 2 and 3 detail the temporal dis-
tribution of data compared to total number of events and the
distribution of station distance.

To work with the FSU data (Richards et al., 2015), an algo-
rithm was built to compile all necessary information including
event origin time, trace start time, P-arrival time with respect
to the origin time, sampling rate, source to station distance,
station and nuclear blast coordinates, and the path to the
waveform file from the existing catalog’s format that follows
CSS 3.0 (Center for Seismic Studies v3.0) schema tables
(wfdisc, site, sitechan, assoc, and origin) of Anderson et al
(1990). We applied a similar method to convert the LLNL data-
set into ObsPy readable formats using LLNL database client, an
ObsPy client for the LLNL DB database (Alvizuri and Tape,
2018), and then converted these to the format of our training
labels. Although not all of this data has a high signal-to-noise
ratio (SNR), there are still many usable waveforms from this set
that will be useful for training data or seismic studies.

Earthquake and seismic noise

An earthquake and seismic noise training dataset was devel-
oped (Fig. 4; Table 3) using the data fetching algorithms used
for UNEs and included in the repository. Our earthquake data-
set includes waveforms from a global catalog of earthquakes

Seismological Research Letters 3517
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from 1 January 2000 to 1 January 2020, with depths shallower
than 50 km, and magnitudes ranging from 4.5 to 6.5 to reflect
typical UNE blast magnitudes. In addition, we removed events
that occur within 30 min of each other to ensure the P arrival
is not mixed with phases from other events, and used only
waveforms with an SNR greater than 2. Using ObsPy’s
MassDownloader module, all available vertical seismograms
from all data centers that implement the FDSN webservices
were downloaded. A total of 5-min-long 127,472 vertical-com-
ponent waveforms from the 25,524 shallow earthquakes were
downloaded and included in the dataset.

To build the noise dataset free of any earthquake seismic
phases, we used stations from the relatively seismically quiet
Central and Eastern United States (CEUS). This region likely
represents the highest density of suitable and globally available
seismic sensors in a region that is both sufficiently seismically
quiet and well cataloged for regional events that do occur. The
primary difficulty with choosing a global distribution of stations
for noise labels is that many more sparsely distributed sites

TABLE 2
Total Underground Nuclear Explosions and
Associated Waveforms in the Prepared Dataset

Number of Number of
Data Source Explosions Waveforms
FDSN query on catalog 538 12,733
FSU digitized seismic records 498* 5045
LLNL dataset 73 2,950
LASA 10 2,755
NIED HI-Net data 6 4,640
Total GTUNE data 774 28,123

FDSN, International Federation of Digital Seismograph Networks; HI-Net, High
Sensitivity Seismograph Network; NIED, National Research Institute for Earth
Science and Disaster Resilience.

*The FSU prepared data in the repository includes 789 nuclear blasts and 8236
waveforms from the FSU dataset, however only but 498 of these are
underground blasts that fit the GTUNE criteria.
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Figure 3. Distribution of station and blast epicentral distance in
the GTUNE underground dataset. Blue denotes station distri-
bution for digitized analog seismograms from the large-aperture
seismic arrays (LASA), LLNL, and FSU prepared datasets. Red
denotes station distribution for digital data from the FDSN
webservers. The color version of this figure is available only in the
electronic edition.

(e.g., island sites near volcanism or subduction zones) will likely
have substantial small nearby earthquake activity that is un or
undercataloged. As such, it becomes a logistical nightmare to
ensure that the developed noise catalog is free from seismic
sources. Nevertheless, we included some Python algorithms that
users can use to build their own “earthquake free” noise dataset.
In addition, they can import noise datasets from other publicly
available seismic labels such as STanford EArthquake Dataset
(STEAD) (Mousavi et al, 2019) or the Italian seismic dataset
for machine learning INSTANCE (Michelini et al., 2021).
Using an earthquake catalog that includes all events within a
60° radius of CEUS, we excluded any earthquake that has an
origin time occurring within 25 min of another event to ensure
that our noise dataset does not include any phases from known
local or regional seismic events. The catalog for regional earth-
quakes was downloaded from the ISC Bulletin (International
Seismological Centre, 2000-2099), and includes earthquakes of
all magnitudes from 1 June 2011 to 1 June 2016, in the rectan-
gular region bounded by latitudes from 15° to 55° in the
northern hemisphere, and longitudes from -130° to —52° in
the western hemisphere. The traces within our noise dataset

TABLE 3
Summary of Earthquake and Noise Labeled
Waveforms

Number of
Data Source Data Type Waveforms
FDSN query on catalog Earthquakes 127,472
Noise 20,833
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likely include earthquake phases from regional or distant
earthquakes that are not listed in the ISC bulletin. However,
because there are earthquakes occurring around the world
almost at all times, seismic phases from distant sources are
likely within most seismic data. These distant phases have
lower frequencies and should not interfere with the higher fre-
quency P-wave phases that many seismic studies focus on. We
did not remove time windows of predicted arrivals from tele-
seismic seismic events during this time period.

P-phase arrivals
Because waveforms of explosions often have much less discern-
ible S-wave arrival as compared to comparably energetic earth-
quake sources (Murphy et al., 2009; Walter et al, 2018), and
many older recordings were only capturing vertical signals,
we only included P-wave phase arrival determinations in our
prepared UNE dataset. All P-phase arrivals were used from
the associated meta data of the source dataset, when available
or sourced from the ISC-EHB Bulletin catalog (Engdahl et al.,
1998). The source of the P phase for each waveform is included
in the dataframes of the prepared data files (see Table 4). For
the digital FDSN acquired waveforms or when P phases are
not available in the prepared dataset, we apply the Baer
Picker method (pk Baer in ObsPy; Baer and Kradolfer 1987;
Beyreuther et al., 2010). This algorithm determines the approxi-
mate onset times using an automatic detection built to detect
both teleseismic and local P-wave arrivals, first motion, and rel-
ative reliability of the pick while ignoring noise and transient
events. The Baer picker method works well with the included
signals. Multiple-component data should be added later, the
method could use all components for phase determination.
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Figure 4. Global map of earthquake locations (yellow circles) and
seismic stations (black triangles) included in the dataset, occur-
ring between 1 January 2000 and 1 January 2020, ranging in
magnitude between 2 and 6.5. Noise stations (red triangles)
across the eastern United States between 1 June 2011 and 1
June 2016, avoiding periods where known earthquakes, both
regionally and globally, may have contaminated signal (stations
are red triangles). The color version of this figure is available only
in the electronic edition.

For more accurate P-wave determinations and to decrease
processing time, we narrowed the allowable window for the algo-
rithm to run, including 5 s before and 15 s after (to allow for
delays in the real phase arrival due to heterogeneities in Earth)
the theoretically predicted P-wave arrival (using the IASPEI-91
velocity model; Engdahl et al., 1998; Crotwell et al., 1999; Snoke,
2009). An example of Baer P-wave picks on regional to teleseis-
mic raw seismograms from the 1992 China Lop Nor nuclear test
is shown in Figure 5. Our adaptation of the P-wave picker algo-
rithm reports the result in an output list that includes the labels
for the nuclear explosion P wave to be converted to an array
(Python NumPy). This list includes for each waveform, the
explosion origin timestamp in seconds (UTC epoch time), the
timestamp of beginning of waveform trace (same format as ori-
gin timestamp), the calculated P-wave arrival time in seconds
with respect to the origin time, the predicted P-wave arrival
in seconds with respect to the origin time, sampling rate of wave-
form trace, distance from explosion to seismic station in degrees,
station latitude, station longitude, explosion latitude, explosion
longitude, the path to the waveform data file. Phase arrivals

Seismological Research Letters 3519



TABLE 4
Prepared Datasets Dataframe Column Format

Evid GTUNE identification number
Origin time GMT epoch time

Trace start time GMT epoch time

P arrival GMT epoch time
Phase Phase name
Source Source of phase pick

Sampling rate Samples per second

Station distance Station epicentral distance (degrees)

Net Network

Chn Channel

Station Station name
Stla Station latitude
Stlo Station longitude
Evla Event latitude
Evlo Event longitude
Mag Magnitude
Magtype Magnitude type

Waveform Time series (NumPy array)

provided in the LLNL, LASA, and FSU datasets, were utilized
when available. The source of the P phases are included as meta-
data in the prepared datasets (see Table 4).

Summary and Catalog Use Case

All the prepared datasets are in the format of a compiled table
(Pandas’ dataframe saved in hdf5 and pickle formats) in which
each row contains the event information, station metadata, P-
arrival time, and time-series array of the raw seismogram.
Table 4 details the format of the prepared data sets.

For all UNE waveforms sourced from the LLNL, LASA, or
ESU datasets, the seismogram is uncut (full length of the avail-
able seismogram). For all data sourced from FDSN webservers
all seismograms are cut to a one-minute trace, with the P wave
set at 10 s, (see Fig. 6 for cut window examples). No prepro-
cessing of the waveforms was done. Because instrument
response is not available for all UNEs in the dataset, instrument
response was not removed from waveforms.

All the available metadata and catalog origin information
for the GTUNE blasts and earthquakes are available within
the repository as text files (extensions: .txt). All scripts are writ-
ten to run in Python 3.8 (extension: .py). All waveform data in
the format of time-series arrays within the dataframe table that
are saved as a flattened or serialized pickle (a Python format
designed for backward compatibility) or hdf5 (binary file
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format for storage of large scientific data sets) files, extensions:
.pkl and .hdf5, respectively. Because of space limitations, we
include all Python query algorithms for the user to download
all available earthquake data from FDSN webservers. Table 4
details the format for each individual column of the prepared
earthquake and UNE data.

The most substantial limitation in developing a rich catalog
from the data available is that most nuclear tests occurred
before the substantial global growth of digital seismic record-
ings beginning in the 1980s (Fig. 2), and that the majority of
these historical seismograms are recorded on more regional
networks. Therefore, the final dataset is highly unbalanced
in the number of earlier analog (fewer waves for many events)
versus modern digital waveforms (many waves from relatively
few events). In addition, the combination of prepared and his-
torical datasets with the FDSN and Hi-Net available data gives
a large spread in epicentral distance degrees, with a slight bias
to regional distances less than 20° (see Fig. 5).

Although the prepared labeled dataset includes a combina-
tion of both originally digital and analog seismograms, traces
that have poor SNR and relatively small training dataset
compared to big data or ML studies, we found it to be robust
for training a Convolutional Neural Network (CNN) classifier
for automatic identification of nuclear blasts, from earth-
quakes and background noise, in continuous traces from
stations at regional and teleseismic distances (Barama et al.,
2020). The trained CNN was highly capable of classifying
signals curated in the format of GTUNE datasets, that is,
window size and positioned event arrival. A more detailed
characterization of this discriminator method is forthcoming,
and the associated refined dataset and training algorithms
will be similarly released. We expect that other seismologists
and data scientists will find this comprehensive and labeled
dataset to equally be fruitful for advanced computational
methods, including ML.

Data and Resources

The GTUNE data repository is available on Zenodo (www.zenodo.org),
the open-access repository for data, 10.5281/
zen0do.7026463. See Figure 7 for a schematic of the repository

Zenodo, doi:

directory. Seismic waveform data and station metadata from digital
seismometers used in this study are available from the Incorporated
Research Institutions for Seismology Data Management Center
(IRIS-DMC; www.fdsn.org/webservices) and National Research
Institute for Earth Science and Disaster Resilience (NIED) High
Sensitivity Seismograph Network (Hi-Net) array (NIED, 2019). All
digitized analog waveforms come from the assembled data sets of
Walter et al. (2004), Richards et al. (2015), and Vidale (2021). A com-
plete list of data centers can be found at www.fdsn.org/webservices/
datacenters/. All websites were last accessed in August 2022.
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Figure 5. Selected seismograms from the May 1992 Chinese Lop for this event. The red and yellow lines indicate P-arrival picks from
Nor nuclear test blast. Waveforms shown are from the GTUNE the FSU dataset and GTUNE Baer algorithm picks, respectively. The
FDSN data and the single waveform available from the FSU dataset color version of this figure is available only in the electronic edition.
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Figure 6. Example of one-minute windows of raw seismic data station IC.MDJ of (a) a 2018 magnitude 5.2 earthquake (distance
included in the compiled dataset, including 10 s before, and 50 s =3.57°) and (b) the 2016 magnitude 5.1 nuclear test (distance =
after the P arrival. Comparison of two vertical seismograms from 3.34°) from the Democratic People’s Republic of Korea (DPRK).
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